Advertisement

Recent Progress in Carbon Dioxide Reduction Using Homogeneous Catalysts

Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 53)

Abstract

Efficient chemical transformations of carbon dioxide into value-added chemicals are of growing importance in academic and industrial laboratories. In this respect, the reduction of carbon dioxide to formic acid, methanol etc., offers interesting possibilities. Herein, we describe the recent developments in carbon dioxide reductions mainly focusing on the use of defined organometallic catalysts and in some cases organocatalysts are also included.

Keywords

Carbon dioxide Homogeneous catalysis Organometallics Reduction 

References

  1. 1.
    Aresta M (2010) Carbon Dioxide as Chemical Feedstock CrossRefGoogle Scholar
  2. 2.
    Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Angew Chem Int Ed 50:8510–8537CrossRefGoogle Scholar
  3. 3.
    Behr A (1988) Angew Chem 100:681–698CrossRefGoogle Scholar
  4. 4.
    Maeda C, Miyazaki Y, Ema T (2014) Catal Sci Technol 4:1482–1497CrossRefGoogle Scholar
  5. 5.
    Huang K, Sun C-L, Shi Z-J (2011) Chem Soc Rev 40:2435–2452CrossRefGoogle Scholar
  6. 6.
    Mikkelsen M, Jorgensen M, Krebs FC (2010) Energy Environ Sci 3:43–81CrossRefGoogle Scholar
  7. 7.
    Sakakura T, Choi J-C, Yasuda H (2007) Chem Rev 107:2365–2387CrossRefGoogle Scholar
  8. 8.
    Liu Q, Wu L, Jackstell R, Beller M (2015) Nat Commun 6:5933CrossRefGoogle Scholar
  9. 9.
    Jessop PG, Ikariya T, Noyori R (1995) Chem Rev 95:259–272CrossRefGoogle Scholar
  10. 10.
    Leitner W (1995) Angew Chem Int Ed 34:2207–2221CrossRefGoogle Scholar
  11. 11.
    Jessop PG, Joó F, Tai C-C (2004) Coord Chem Rev 248:2425–2442CrossRefGoogle Scholar
  12. 12.
    Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703–3727CrossRefGoogle Scholar
  13. 13.
    Inoue Y, Izumida H, Sasaki Y, Hashimoto H (1976) Chem Lett 863–864Google Scholar
  14. 14.
    Jessop PG, Hsiao Y, Ikariya T, Noyori R (1996) J Am Chem Soc 118:344–355CrossRefGoogle Scholar
  15. 15.
    Jessop PG, Ikariya T, Noyori R (1994) Nature 368:231–233CrossRefGoogle Scholar
  16. 16.
    Munshi P, Main AD, Linehan JC, Tai C-C, Jessop PG (2002) J Am Chem Soc 124:7963–7971CrossRefGoogle Scholar
  17. 17.
    Himeda Y, Onozawa-Komatsuzaki N, Sugihara H, Kasuga K (2007) Organometallics 26:702–712CrossRefGoogle Scholar
  18. 18.
    Tanaka R, Yamashita M, Nozaki K (2009) J Am Chem Soc 131:14168–14169CrossRefGoogle Scholar
  19. 19.
    Preti D, Squarcialupi S, Fachinetti G (2010) Angew Chem Int Ed 49:2581–2584CrossRefGoogle Scholar
  20. 20.
    Elek J, Nádasdi L, Papp G, Laurenczy G, Joó F (2003) Appl Catal A 255:59–67CrossRefGoogle Scholar
  21. 21.
    Federsel C, Jackstell R, Boddien A, Laurenczy G, Beller M (2010) ChemSusChem 3:1048–1050CrossRefGoogle Scholar
  22. 22.
    Gowrisankar S, Federsel C, Neumann H, Ziebart C, Jackstell R, Spannenberg A, Beller M (2013) ChemSusChem 6:85–91CrossRefGoogle Scholar
  23. 23.
    Boddien A, Gärtner F, Federsel C, Sponholz P, Mellmann D, Jackstell R, Junge H, Beller M (2011) Angew Chem Int Ed 50:6411–6414CrossRefGoogle Scholar
  24. 24.
    Papp G, Csorba J, Laurenczy G, Joó F (2011) Angew Chem Int Ed 50:10433–10435CrossRefGoogle Scholar
  25. 25.
    Boddien A, Federsel C, Sponholz P, Mellmann D, Jackstell R, Junge H, Laurenczy G, Beller M (2012) Energy Environ Sci 5:8907–8911CrossRefGoogle Scholar
  26. 26.
    Yuichiro H (2010) J Am Chem Soc 1056:141–153Google Scholar
  27. 27.
    Himeda Y, Miyazawa S, Hirose T (2011) ChemSusChem 4:487–493CrossRefGoogle Scholar
  28. 28.
    Hou C, Jiang J, Zhang S, Wang G, Zhang Z, Ke Z, Zhao C (2014) ACS Catal 4:2990–2997CrossRefGoogle Scholar
  29. 29.
    Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M (2010) Angew Chem Int Ed 49:9777–9780CrossRefGoogle Scholar
  30. 30.
    Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M (2012) J Am Chem Soc 134:20701–20704CrossRefGoogle Scholar
  31. 31.
    Langer R, Diskin-Posner Y, Leitus G, Shimon LJW, Ben-David Y, Milstein D (2011) Angew Chem Int Ed 50:9948–9952CrossRefGoogle Scholar
  32. 32.
    Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M (2012) Chem Eur J 18:72–75CrossRefGoogle Scholar
  33. 33.
    Jeletic MS, Mock MT, Appel AM, Linehan JC (2013) J Am Chem Soc 135:11533–11536CrossRefGoogle Scholar
  34. 34.
    Jeletic MS, Helm ML, Hulley EB, Mock MT, Appel AM, Linehan JC (2014) ACS Catal 4:3755–3762CrossRefGoogle Scholar
  35. 35.
    Schaub T, Paciello RA (2011) Angew Chem Int Ed 50:7278–7282CrossRefGoogle Scholar
  36. 36.
    Drake JL, Manna CM, Byers JA (2013) Organometallics 32:6891–6894CrossRefGoogle Scholar
  37. 37.
    Hayashi H, Ogo S, Fukuzumi S (2004) Chem Commun 2714–2715Google Scholar
  38. 38.
    Ogo S, Kabe R, Hayashi H, Harada R, Fukuzumi S (2006) Dalton Trans 4657–4663Google Scholar
  39. 39.
    Moret S, Dyson PJ, Laurenczy G (2014) Nat Commun 5. doi: 10.1038/ncomms5017
  40. 40.
    Zhang Z, Xie Y, Li W, Hu S, Song J, Jiang T, Han B (2008) Angew Chem Int Ed 47:1127–1129CrossRefGoogle Scholar
  41. 41.
    Yasaka Y, Wakai C, Matubayasi N, Nakahara M (2010) J Phys Chem C 114:3510–3515CrossRefGoogle Scholar
  42. 42.
    Wesselbaum S, Hintermair U, Leitner W (2012) Angew Chem Int Ed 51:8585–8588CrossRefGoogle Scholar
  43. 43.
    Sanz S, Benítez M, Peris E (2009) Organometallics 29:275–277CrossRefGoogle Scholar
  44. 44.
    Sanz S, Azua A, Peris E (2010) Dalton Trans 39:6339–6343CrossRefGoogle Scholar
  45. 45.
    Azua A, Sanz S, Peris E (2011) Chem Eur J 17:3963–3967CrossRefGoogle Scholar
  46. 46.
    Dibenedetto A, Stufano P, Nocito F, Aresta M (2011) ChemSusChem 4:1311–1315CrossRefGoogle Scholar
  47. 47.
    Motokura K, Kashiwame D, Miyaji A, Baba T (2012) Org Lett 14:2642–2645CrossRefGoogle Scholar
  48. 48.
    Jansen A, Pitter S (2004) J Mol Catal A Chem 217:41–45CrossRefGoogle Scholar
  49. 49.
    Shintani R, Nozaki K (2013) Organometallics 32:2459–2462CrossRefGoogle Scholar
  50. 50.
    González-Sebastián L, Flores-Alamo M, Garcıa JJ (2013) Organometallics 32:7186–7194CrossRefGoogle Scholar
  51. 51.
    Das Neves Gomes C, Jacquet O, Villiers C, Thuéry P, Ephritikhine M, Cantat T (2012) Angew Chem Int Ed 51:187–190CrossRefGoogle Scholar
  52. 52.
    Jacquet O, Das Neves Gomes C, Ephritikhine M, Cantat T (2012) J Am Chem Soc 134:2934–2937CrossRefGoogle Scholar
  53. 53.
    Khan MMT, Halligudi SB, Shukla S (1989) J Mol Catal 57:47–60CrossRefGoogle Scholar
  54. 54.
    Tominaga K-I, Sasaki Y, Kawai M, Watanabe T, Saito M (1993) J Chem Soc Chem 629–631Google Scholar
  55. 55.
    Tominaga K-I, Sasaki Y, Hagihara K, Watanabe T, Saito M (1994) Chem Lett 23:1391–1394CrossRefGoogle Scholar
  56. 56.
    Tsuchiya K, Huang J-D, Tominaga K-I (2013) ACS Catal 3:2865–2868CrossRefGoogle Scholar
  57. 57.
    Tominaga K-I, Sasaki Y, Watanabe T, Saito M (1997) Energy 22:169–176CrossRefGoogle Scholar
  58. 58.
    Wu L, Liu Q, Jackstell R, Beller M (2014) Angew Chem Int Ed 53:6310–6320CrossRefGoogle Scholar
  59. 59.
    Tominaga K-I, Sasaki Y (2000) Catal Commun 1:1–3CrossRefGoogle Scholar
  60. 60.
    Tominaga K-I, Sasaki Y (2004) J Mol Catal A Chem 220:159–165CrossRefGoogle Scholar
  61. 61.
    Jääskeläinen S, Haukka M (2003) Appl Catal A 247:95–100CrossRefGoogle Scholar
  62. 62.
    Liu Q, Wu L, Fleischer I, Selent D, Franke R, Jackstell R, Beller M (2014) Chem Eur J 20:6809CrossRefGoogle Scholar
  63. 63.
    Wu L, Liu Q, Fleischer I, Jackstell R, Beller M (2014) Nat Commun 5:3091Google Scholar
  64. 64.
    Ostapowicz TG, Schmitz M, Krystof M, Klankermayer J, Leitner W (2013) Angew Chem Int Ed 52:12119–12123CrossRefGoogle Scholar
  65. 65.
    Laitar DS, Müller P, Sadighi JP (2005) J Am Chem Soc 127:17196–17197CrossRefGoogle Scholar
  66. 66.
    Dobrovetsky R, Stephan DW (2013) Angew Chem Int Ed 52:2516–2519CrossRefGoogle Scholar
  67. 67.
    Takeda H, Ishitani O (2010) Coord Chem Rev 254:346–354CrossRefGoogle Scholar
  68. 68.
    Lehn J-M, Ziessel R (1982) Proc Natl Acad Sci 79:701–704CrossRefGoogle Scholar
  69. 69.
    Hawecker J, Lehn J-M, Ziessel R (1983) Chem Commun 536–538Google Scholar
  70. 70.
    Hayashi Y, Kita S, Brunschwig BS, Fujita E (2003) J Am Chem Soc 125:11976–11987CrossRefGoogle Scholar
  71. 71.
    Takeda H, Koike K, Inoue H, Ishitani O (2008) J Am Chem Soc 130:2023–2031CrossRefGoogle Scholar
  72. 72.
    Bian Z-Y, Sumi K, Furue M, Sato S, Koike K, Ishitani O (2008) Inorg Chem 47:10801–10803CrossRefGoogle Scholar
  73. 73.
    Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M, Ishitani O (2005) Inorg Chem 44:2326–2336CrossRefGoogle Scholar
  74. 74.
    Shakeri J, Hadadzadeh H, Tavakol H (2014) Polyhedron 78:112–122CrossRefGoogle Scholar
  75. 75.
    Sato S, Morikawa T, Kajino T, Ishitani O (2013) Angew Chem Int Ed 52:988–992CrossRefGoogle Scholar
  76. 76.
    Kuramochi Y, Kamiya M, Ishida H (2014) Inorg Chem 53:3326–3332CrossRefGoogle Scholar
  77. 77.
    Bonin J, Robert M, Routier MS (2014) J Am Chem Soc 136:16768–16771CrossRefGoogle Scholar
  78. 78.
    Bontemps S, Sabo-Etienne S (2013) Angew Chem Int Ed 52:10253–10255CrossRefGoogle Scholar
  79. 79.
    Bontemps S, Vendier L, Sabo-Etienne S (2014) J Am Chem Soc 136:4419–4425CrossRefGoogle Scholar
  80. 80.
    Metsänen TT, Oestreich M (2015) Organometallics 34:543–546CrossRefGoogle Scholar
  81. 81.
    Goeppert A, Czaun M, Jones J-P, Surya Prakash GK, Olah GA (2014) Chem Soc Rev 43:7995–8048CrossRefGoogle Scholar
  82. 82.
    Ganesh I (2014) Renew Sust Energ Rev 31:221–257CrossRefGoogle Scholar
  83. 83.
    Cui Z-M, Liu Q, Song W-G, Wan L-J (2006) Angew Chem Int Ed 45:6512–6515CrossRefGoogle Scholar
  84. 84.
    Olah GA (2013) Angew Chem Int Ed 52:104–107CrossRefGoogle Scholar
  85. 85.
    Wesselbaum S, vom Stein T, Klankermayer J, Leitner W (2012) Angew Chem Int Ed 51:7499–7502CrossRefGoogle Scholar
  86. 86.
    Balaraman E, Gunanathan C, Zhang J, Shimon LJW, Milstein D (2011) Nat Chem 3:609–614CrossRefGoogle Scholar
  87. 87.
    Han Z, Rong L, Wu J, Zhang L, Wang Z, Ding K (2012) Angew Chem Int Ed 51:13041–13045CrossRefGoogle Scholar
  88. 88.
    Miller AJM, Heinekey DM, Mayer JM, Goldberg KI (2013) Angew Chem Int Ed 52:3981–3984CrossRefGoogle Scholar
  89. 89.
    Savourey S, Lefèvre G, Berthet J-C, Thuéry P, Genre C, Cantat T (2014) Angew Chem Int Ed 53:10466–10470CrossRefGoogle Scholar
  90. 90.
    Kim SH, Hong SH (2014) ACS Catal 4:3630–3636CrossRefGoogle Scholar
  91. 91.
    Eisenschmid TC, Eisenberg R (1989) Organometallics 8:1822–1824CrossRefGoogle Scholar
  92. 92.
    Chakraborty S, Zhang J, Krause JA, Guan H (2010) J Am Chem Soc 132:8872–8873CrossRefGoogle Scholar
  93. 93.
    Chakraborty S, Patel YJ, Krause JA, Guan H (2012) Polyhedron 32:30–34CrossRefGoogle Scholar
  94. 94.
    Riduan SN, Zhang Y, Ying JY (2009) Angew Chem Int Ed 48:3322–3325CrossRefGoogle Scholar
  95. 95.
    Huang F, Lu G, Zhao L, Li H, Wang Z-X (2010) J Am Chem Soc 132:12388–12396CrossRefGoogle Scholar
  96. 96.
    Das Neves Gomes C, Blondiaux E, Thuéry P, Cantat T (2014) Chem Eur J 20:7098–7106CrossRefGoogle Scholar
  97. 97.
    Anker MD, Arrowsmith M, Bellham P, Hill MS, Kociok-Kohn G, Liptrot DJ, Mahon MF, Weetman C (2014) Chem Sci 5:2826–2830CrossRefGoogle Scholar
  98. 98.
    Zhang L, Cheng J, Hou Z (2013) Chem Commun 49:4782–4784CrossRefGoogle Scholar
  99. 99.
    Courtemanche M-A, Légaré M-A, Maron L, Fontaine F-G (2013) J Am Chem Soc 135:9326–9329CrossRefGoogle Scholar
  100. 100.
    Ménard G, Stephan DW (2010) J Am Chem Soc 132:1796–1797CrossRefGoogle Scholar
  101. 101.
    Ashley AE, Thompson AL, O’Hare D (2009) Angew Chem Int Ed 48:9839–9843CrossRefGoogle Scholar
  102. 102.
    Courtemanche M-A, Légaré M-A, Maron L, Fontaine F-G (2014) J Am Chem Soc 136:10708–10717CrossRefGoogle Scholar
  103. 103.
    Tominaga K-I, Sasaki Y, Saito M, Hagihara K, Watanabe T (1994) J Mol Catal 89:51–55CrossRefGoogle Scholar
  104. 104.
    Jacquet O, Frogneux X, Das Neves Gomes C, Cantat T (2013) Chem Sci 4:2127–2131CrossRefGoogle Scholar
  105. 105.
    Li Y, Fang X, Junge K, Beller M (2013) Angew Chem Int Ed 52:9568–9571CrossRefGoogle Scholar
  106. 106.
    Frogneux X, Jacquet O, Cantat T (2014) Catal Sci Technol 4:1529–1533CrossRefGoogle Scholar
  107. 107.
    Beydoun K, vom Stein T, Klankermayer J, Leitner W (2013) Angew Chem Int Ed 52:9554–9557CrossRefGoogle Scholar
  108. 108.
    Li Y, Sorribes I, Yan T, Junge K, Beller M (2013) Angew Chem Int Ed 52:12156–12160CrossRefGoogle Scholar
  109. 109.
    Li Y, Yan T, Junge K, Beller M (2014) Angew Chem Int Ed 53:10476–10480CrossRefGoogle Scholar
  110. 110.
    Vaska L, Schreiner S, Felty RA, Yu JY (1989) J Mol Catal 52:L11–L16CrossRefGoogle Scholar
  111. 111.
    Matsuo T, Kawaguchi H (2006) J Am Chem Soc 128:12362–12363CrossRefGoogle Scholar
  112. 112.
    Park S, Bézier D, Brookhart M (2012) J Am Chem Soc 134:11404–11407CrossRefGoogle Scholar
  113. 113.
    Mitton SJ, Turculet L (2012) Chem Eur J 18:15258–15262CrossRefGoogle Scholar
  114. 114.
    Berkefeld A, Piers WE, Parvez M (2010) J Am Chem Soc 132:10660–10661CrossRefGoogle Scholar
  115. 115.
    Khandelwal M, Wehmschulte RJ (2012) Angew Chem Int Ed 51:7323–7326CrossRefGoogle Scholar
  116. 116.
    Wen M, Huang F, Lu G, Wang Z-X (2013) Inorg Chem 52:12098–12107CrossRefGoogle Scholar
  117. 117.
    Maidan R, Willner I (1986) J Am Chem Soc 108:8100–8101CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Leibniz-Institut für Katalyse an der Universität RostockRostockGermany

Personalised recommendations