Size Control of Monodisperse Metal Nanocrystals in Ionic Liquids

  • Pascal Lignier
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 51)


During the last decade, a great interest in the preparation of uniform nanocrystals has offered efficient synthetic strategies to precisely engineer metal, metal oxide and alloy at the nanoscale. Due to their physicochemical properties, ionic liquids (ILs) simultaneously demonstrated their potential in different areas such as nanocrystal synthesis, catalysis and energy. As a result, ionic liquids have been employed for the preparation of monodisperse nanocrystals and the control of their size. This chapter highlights the most promising methods for the synthesis of uniform nanocrystals in ionic liquids which act as a solvent, stabiliser, reducing agent and even precursor. As a result, successful preparations of nanoparticles in the presence of ILs are now available for both noble and earth-abundant elements such as gold, platinum, iridium, silver, palladium, ruthenium, rhodium, copper, nickel, cobalt and iron.

The formation mechanisms of these nanocrystals are discussed as well as our mechanistic understanding in conventional organic and aqueous solvents. In addition, the IL approach is compared to leading methods in conventional solvents to make possible the identification of general principles for most metallic elements. By analogy with conventional solvents, these strategies can be adapted to the preparation of semiconductor nanocrystals. These achievements are going to drive the identification of relationships between the nature of ILs components, the physicochemical properties of ILs, the formation of nanocrystals in ILs and the resulting performances of these nano-objects.


Alloy Colloid Earth-abundant metal Catalysis Energy Gold Iron oxide Ligand Metal oxide Nanocluster Nanocrystal Nanoparticle Nanostructure Noble metal Organometallic Platinum Ruthenium Silver Surface chemistry Transition metal 


  1. 1.
    Yu Y, Zhang Q, Yao Q et al (2014) Architectural design of heterogeneous metallic nanocrystals – principles and processes. Acc Chem Res 47:3530–3540. doi: 10.1021/ar5002704 CrossRefGoogle Scholar
  2. 2.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103. doi: 10.1002/anie.200802248 CrossRefGoogle Scholar
  3. 3.
    Buck MR, Schaak RE (2013) Emerging strategies for the total synthesis of inorganic nanostructures. Angew Chem Int Ed 52:6154–6178. doi: 10.1002/anie.201207240 CrossRefGoogle Scholar
  4. 4.
    Lignier P, Bellabarba R, Tooze RP (2012) Scalable strategies for the synthesis of well-defined copper metal and oxide nanocrystals. Chem Soc Rev 41:1708–1720. doi: 10.1039/C1CS15223H CrossRefGoogle Scholar
  5. 5.
    Dupont J, Fonseca GS, Umpierre AP et al (2002) Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124:4228–4229. doi: 10.1021/ja025818u CrossRefGoogle Scholar
  6. 6.
    Zhou Y, Antonietti M (2003) Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J Am Chem Soc 125:14960–14961. doi: 10.1021/ja0380998 CrossRefGoogle Scholar
  7. 7.
    Zhou Y, Schattka JH, Antonietti M (2004) Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol–gel nanocasting technique. Nano Lett 4:477–481. doi: 10.1021/nl025861f CrossRefGoogle Scholar
  8. 8.
    Zhou Y, Antonietti M (2004) A series of highly ordered, super-microporous, lamellar silicas prepared by nanocasting with ionic liquids. Chem Mater 16:544–550. doi: 10.1021/cm034442w CrossRefGoogle Scholar
  9. 9.
    Parnham ER, Morris RE (2007) Ionothermal synthesis of zeolites, metal–organic frameworks, and inorganic–organic hybrids. Acc Chem Res 40:1005–1013. doi: 10.1021/ar700025k CrossRefGoogle Scholar
  10. 10.
    Dupont J, Scholten JD (2010) On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev 39:1780–1804. doi: 10.1039/B822551F CrossRefGoogle Scholar
  11. 11.
    Vollmer C, Janiak C (2011) Naked metal nanoparticles from metal carbonyls in ionic liquids: easy synthesis and stabilization. Coord Chem Rev 255:2039–2057. doi: 10.1016/j.ccr.2011.03.005 CrossRefGoogle Scholar
  12. 12.
    Scholten JD, Leal BC, Dupont J (2011) Transition metal nanoparticle catalysis in ionic liquids. ACS Catal 2:184–200. doi: 10.1021/cs200525e CrossRefGoogle Scholar
  13. 13.
    Zhang P, Wu T, Han B (2014) Preparation of catalytic materials using ionic liquids as the media and functional components. Adv Mater 26:6810–6827. doi: 10.1002/adma.201305448 CrossRefGoogle Scholar
  14. 14.
    Gebresilassie Eshetu G, Armand M, Scrosati B, Passerini S (2014) Energy storage materials synthesized from ionic liquids. Angew Chem Int Ed 53:13342–13359. doi: 10.1002/anie.201405910 CrossRefGoogle Scholar
  15. 15.
    Niu Z, Li Y (2013) Removal and utilization of capping agents in nanocatalysis. Chem Mater 26:72–83. doi: 10.1021/cm4022479 CrossRefGoogle Scholar
  16. 16.
    Amiens C, Chaudret B, Ciuculescu-Pradines D et al (2013) Organometallic approach for the synthesis of nanostructures. New J Chem 37:3374. doi: 10.1039/c3nj00650f CrossRefGoogle Scholar
  17. 17.
    Philippot K, Lignier P, Chaudret B (2014) Organometallic ruthenium nanoparticles and catalysis. In: Dixneuf PH, Bruneau C (eds) Ruthenium in catalysis. Springer, Heidelberg, pp 319–370Google Scholar
  18. 18.
    Salas G, Podgoršek A, Campbell PS et al (2011) Ruthenium nanoparticles in ionic liquids: structural and stability effects of polar solutes. Phys Chem Chem Phys 13:13527. doi: 10.1039/c1cp20623k CrossRefGoogle Scholar
  19. 19.
    Pery T, Pelzer K, Buntkowsky G et al (2005) Direct NMR evidence for the presence of mobile surface hydrides on ruthenium nanoparticles. Chemphyschem 6:605–607. doi: 10.1002/cphc.200400621 CrossRefGoogle Scholar
  20. 20.
    García-Antón J, Axet MR, Jansat S et al (2008) Reactions of olefins with ruthenium hydride nanoparticles: NMR characterization, hydride titration, and room-temperature C-C bond activation. Angew Chem Int Ed 47:2074–2078. doi: 10.1002/anie.200704763 CrossRefGoogle Scholar
  21. 21.
    Lignier P, Comotti M, Schüth F et al (2009) Effect of the titania morphology on the Au/TiO2-catalyzed aerobic epoxidation of stilbene. Catal Today 141:355–360. doi: 10.1016/j.cattod.2008.04.032 CrossRefGoogle Scholar
  22. 22.
    Lignier P, Bellabarba R, Tooze RP et al (2011) Facile synthesis of branched ruthenium nanocrystals and their use in catalysis. Cryst Growth Des 12:939–942. doi: 10.1021/cg201408h CrossRefGoogle Scholar
  23. 23.
    Liakakos N, Cormary B, Li X et al (2012) The big impact of a small detail: cobalt nanocrystal polymorphism as a result of precursor addition rate during stock solution preparation. J Am Chem Soc 134:17922–17931. doi: 10.1021/ja304487b CrossRefGoogle Scholar
  24. 24.
    Comesaña-Hermo M, Estivill R, Ciuculescu D et al (2014) Effect of a side reaction involving structural changes of the surfactants on the shape control of cobalt nanoparticles. Langmuir 30:4474–4482. doi: 10.1021/la5005165 CrossRefGoogle Scholar
  25. 25.
    Park J, Joo J, Kwon SG et al (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660. doi: 10.1002/anie.200603148 CrossRefGoogle Scholar
  26. 26.
    Ortiz N, Skrabalak SE (2014) On the dual roles of ligands in the synthesis of colloidal metal nanostructures. Langmuir 30:6649–6659. doi: 10.1021/la404539p CrossRefGoogle Scholar
  27. 27.
    Cademartiri L, Kitaev V (2011) On the nature and importance of the transition between molecules and nanocrystals: towards a chemistry of “nanoscale perfection”. Nanoscale 3:3435–3446. doi: 10.1039/C1NR10365B CrossRefGoogle Scholar
  28. 28.
    Mourdikoudis S, Liz-Marzán LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25:1465–1476. doi: 10.1021/cm4000476 CrossRefGoogle Scholar
  29. 29.
    Wu Y, Wang D, Li Y (2014) Nanocrystals from solutions: catalysts. Chem Soc Rev 43:2112–2124. doi: 10.1039/C3CS60221D CrossRefGoogle Scholar
  30. 30.
    Chng LL, Erathodiyil N, Ying JY (2013) Nanostructured catalysts for organic transformations. Acc Chem Res 46:1825–1837. doi: 10.1021/ar300197s CrossRefGoogle Scholar
  31. 31.
    Niedermeyer H, Hallett JP, Villar-Garcia IJ et al (2012) Mixtures of ionic liquids. Chem Soc Rev 41:7780. doi: 10.1039/c2cs35177c CrossRefGoogle Scholar
  32. 32.
    Egorova KS, Ananikov VP (2014) Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 7:336–360. doi: 10.1002/cssc.201300459 CrossRefGoogle Scholar
  33. 33.
    Paternò A, D’Anna F, Musumarra G et al (2014) A multivariate insight into ionic liquids toxicities. RSC Adv 4:23985. doi: 10.1039/c4ra03230f CrossRefGoogle Scholar
  34. 34.
    Canongia Lopes JNA, Pádua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335. doi: 10.1021/jp056006y CrossRefGoogle Scholar
  35. 35.
    Prechtl MHG, Scariot M, Scholten JD et al (2008) Nanoscale Ru(0) particles: arene hydrogenation catalysts in imidazolium ionic liquids. Inorg Chem 47:8995–9001. doi: 10.1021/ic801014f CrossRefGoogle Scholar
  36. 36.
    Prechtl MHG, Campbell PS, Scholten JD et al (2010) Imidazolium ionic liquids as promoters and stabilising agents for the preparation of metal(0) nanoparticles by reduction and decomposition of organometallic complexes. Nanoscale 2:2601–2606. doi: 10.1039/C0NR00574F CrossRefGoogle Scholar
  37. 37.
    Luska KL, Moores A (2012) Ruthenium nanoparticle catalysts stabilized in phosphonium and imidazolium ionic liquids: dependence of catalyst stability and activity on the ionicity of the ionic liquid. Green Chem 14:1736. doi: 10.1039/c2gc35241a CrossRefGoogle Scholar
  38. 38.
    Santos LMNBF, Canongia Lopes JN, Coutinho JAP et al (2006) Ionic liquids: first direct determination of their cohesive energy. J Am Chem Soc 129:284–285. doi: 10.1021/ja067427b CrossRefGoogle Scholar
  39. 39.
    Podgoršek A, Pensado AS, Santini CC et al (2013) Interaction energies of ionic liquids with metallic nanoparticles: solvation and stabilization effects. J Phys Chem C 117:3537–3547. doi: 10.1021/jp309064u CrossRefGoogle Scholar
  40. 40.
    Campbell PS, Santini CC, Bouchu D et al (2010) A novel stabilisation model for ruthenium nanoparticles in imidazolium ionic liquids: in situ spectroscopic and labelling evidence. Phys Chem Chem Phys 12:4217–4223. doi: 10.1039/B925329G CrossRefGoogle Scholar
  41. 41.
    Vidoni O, Philippot K, Amiens C et al (1999) Novel, spongelike ruthenium particles of controllable size stabilized only by organic solvents. Angew Chem Int Ed 38:3736–3738. doi: 10.1002/(SICI)1521-3773(19991216)38:24<3736::AID-ANIE3736>3.0.CO;2-E CrossRefGoogle Scholar
  42. 42.
    Pelzer K, Vidoni O, Philippot K et al (2003) Organometallic synthesis of size-controlled polycrystalline ruthenium nanoparticles in the presence of alcohols. Adv Funct Mater 13:118–126. doi: 10.1002/adfm.200390017 CrossRefGoogle Scholar
  43. 43.
    Ott LS, Cline ML, Deetlefs M et al (2005) Nanoclusters in ionic liquids: evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by 2H NMR. J Am Chem Soc 127:5758–5759. doi: 10.1021/ja0423320 CrossRefGoogle Scholar
  44. 44.
    Scholten JD, Ebeling G, Dupont J (2007) On the involvement of NHC carbenes in catalytic reactions by iridium complexes, nanoparticle and bulk metal dispersed in imidazolium ionic liquids. Dalton Trans 5554–5560. doi:10.1039/B707888AGoogle Scholar
  45. 45.
    Chen W, Davies JR, Ghosh D et al (2006) Carbene-functionalized ruthenium nanoparticles. Chem Mater 18:5253–5259. doi: 10.1021/cm061595l CrossRefGoogle Scholar
  46. 46.
    Vignolle J, Tilley TD (2009) N-Heterocyclic carbene-stabilized gold nanoparticles and their assembly into 3D superlattices. Chem Commun 7230. doi:10.1039/b913884fGoogle Scholar
  47. 47.
    Lara P, Rivada-Wheelaghan O, Conejero S et al (2011) Ruthenium nanoparticles stabilized by N-heterocyclic carbenes: ligand location and influence on reactivity. Angew Chem Int Ed 50:12080–12084. doi: 10.1002/anie.201106348 CrossRefGoogle Scholar
  48. 48.
    Baquero EA, Tricard S, Flores JC et al (2014) Highly stable water-soluble platinum nanoparticles stabilized by hydrophilic N-heterocyclic carbenes. Angew Chem 126:13436–13440. doi: 10.1002/ange.201407758 CrossRefGoogle Scholar
  49. 49.
    Ling X, Roland S, Pileni M-P (2015) Supracrystals of N--heterocyclic carbene-coated Au nanocrystals. Chem Mater 27:414–423. doi: 10.1021/cm502714s CrossRefGoogle Scholar
  50. 50.
    Wang Y, Yang H (2006) Oleic acid as the capping agent in the synthesis of noble metal nanoparticles in imidazolium-based ionic liquids. Chem Commun 2545–2547. doi:10.1039/B604269DGoogle Scholar
  51. 51.
    Darwich W, Gedig C, Srour H et al (2013) Single step synthesis of metallic nanoparticles using dihydroxyl functionalized ionic liquids as reductive agent. RSC Adv 3:20324. doi: 10.1039/c3ra43909g CrossRefGoogle Scholar
  52. 52.
    Luska KL, Moores A (2012) Functionalized ionic liquids for the synthesis of metal nanoparticles and their application in catalysis. ChemCatChem 4:1534–1546. doi: 10.1002/cctc.201100366 CrossRefGoogle Scholar
  53. 53.
    Dinda E, Si S, Kotal A, Mandal TK (2008) Novel ascorbic acid based ionic liquids for the in situ synthesis of quasi-spherical and anisotropic gold nanostructures in aqueous medium. Chem Eur J 14:5528–5537. doi: 10.1002/chem.200800006 CrossRefGoogle Scholar
  54. 54.
    Yang X, Yan N, Fei Z et al (2008) Biphasic hydrogenation over PVP stabilized Rh nanoparticles in hydroxyl functionalized ionic liquids. Inorg Chem 47:7444–7446. doi: 10.1021/ic8009145 CrossRefGoogle Scholar
  55. 55.
    Neouze M-A (2010) About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials. J Mater Chem 20:9593. doi: 10.1039/c0jm00616e CrossRefGoogle Scholar
  56. 56.
    Anthony JL, Anderson JL, Maginn EJ, Brennecke JF (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109:6366–6374. doi: 10.1021/jp046404l CrossRefGoogle Scholar
  57. 57.
    Redel E, Thomann R, Janiak C (2008) First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume. Inorg Chem 47:14–16. doi: 10.1021/ic702071w CrossRefGoogle Scholar
  58. 58.
    Li C, Gu L, Tsukimoto S et al (2010) Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries. Adv Mater 22:3650–3654. doi: 10.1002/adma.201000535 CrossRefGoogle Scholar
  59. 59.
    Van Santen RA (2009) Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res 42:57–66. doi: 10.1021/ar800022m CrossRefGoogle Scholar
  60. 60.
    Zheng H, Smith RK, Jun Y et al (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–1312. doi: 10.1126/science.1172104 CrossRefGoogle Scholar
  61. 61.
    Yamada Y, Tsung C-K, Huang W et al (2011) Nanocrystal bilayer for tandem catalysis. Nat Chem 3:372–376. doi: 10.1038/nchem.1018 CrossRefGoogle Scholar
  62. 62.
    Kang Y, Ye X, Chen J et al (2013) Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation. J Am Chem Soc 135:1499–1505. doi: 10.1021/ja310427u CrossRefGoogle Scholar
  63. 63.
    Shevchenko EV, Talapin DV, Schnablegger H et al (2003) Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. J Am Chem Soc 125:9090–9101. doi: 10.1021/ja029937l CrossRefGoogle Scholar
  64. 64.
    Uematsu T, Baba M, Oshima Y et al (2014) Atomic resolution imaging of gold nanoparticle generation and growth in ionic liquids. J Am Chem Soc 136:13789–13797. doi: 10.1021/ja506724w CrossRefGoogle Scholar
  65. 65.
    Gutel T, Santini CC, Philippot K et al (2009) Organized 3D-alkyl imidazolium ionic liquids could be used to control the size of in situ generated ruthenium nanoparticles? J Mater Chem 19:3624. doi: 10.1039/b821659b CrossRefGoogle Scholar
  66. 66.
    Yang M, Campbell PS, Santini CC, Mudring A-V (2014) Small nickel nanoparticle arrays from long chain imidazolium ionic liquids. Nanoscale 6:3367. doi: 10.1039/c3nr05048c CrossRefGoogle Scholar
  67. 67.
    Migowski P, Machado G, Texeira SR et al (2007) Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids. Phys Chem Chem Phys 9:4814. doi: 10.1039/b703979d CrossRefGoogle Scholar
  68. 68.
    Stratton SA, Luska KL, Moores A (2012) Rhodium nanoparticles stabilized with phosphine functionalized imidazolium ionic liquids as recyclable arene hydrogenation catalysts. Catal Today 183:96–100. doi: 10.1016/j.cattod.2011.09.016 CrossRefGoogle Scholar
  69. 69.
    Arquillière PP, Helgadottir IS, Santini CC et al (2013) Bimetallic Ru–Cu nanoparticles synthesized in ionic liquids: kinetically controlled size and structure. Top Catal 56:1192–1198. doi: 10.1007/s11244-013-0085-3 CrossRefGoogle Scholar
  70. 70.
    Khare V, Li Z, Mantion A et al (2010) Strong anion effects on gold nanoparticle formation in ionic liquids. J Mater Chem 20:1332. doi: 10.1039/b917467b CrossRefGoogle Scholar
  71. 71.
    Krämer J, Redel E, Thomann R, Janiak C (2008) Use of ionic liquids for the synthesis of iron, ruthenium, and osmium nanoparticles from their metal carbonyl precursors. Organometallics 27:1976–1978. doi: 10.1021/om800056z CrossRefGoogle Scholar
  72. 72.
    Silva DO, Scholten JD, Gelesky MA et al (2008) Catalytic gas-to-liquid processing using cobalt nanoparticles dispersed in imidazolium ionic liquids. ChemSusChem 1:291–294. doi: 10.1002/cssc.200800022 CrossRefGoogle Scholar
  73. 73.
    Bruss AJ, Gelesky MA, Machado G, Dupont J (2006) Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins. J Mol Catal A Chem 252:212–218. doi: 10.1016/j.molcata.2006.02.063 CrossRefGoogle Scholar
  74. 74.
    Fonseca GS, Umpierre AP, Fichtner PFP et al (2003) The use of imidazolium ionic liquids for the formation and stabilization of Ir0 and Rh0 nanoparticles: efficient catalysts for the hydrogenation of arenes. Chem Eur J 9:3263–3269. doi: 10.1002/chem.200304753 CrossRefGoogle Scholar
  75. 75.
    Gelesky MA, Umpierre AP, Machado G et al (2005) Laser-induced fragmentation of transition metal nanoparticles in ionic liquids. J Am Chem Soc 127:4588–4589. doi: 10.1021/ja042711t CrossRefGoogle Scholar
  76. 76.
    Kwak K, Kumar SS, Pyo K, Lee D (2013) Ionic liquid of a gold nanocluster: a versatile matrix for electrochemical biosensors. ACS Nano 8:671–679. doi: 10.1021/nn4053217 CrossRefGoogle Scholar
  77. 77.
    Yu F, Xu X, Baddeley CJ et al (2014) Surface ligand mediated growth of CuPt nanorods. CrystEngComm 16:1714–1723. doi: 10.1039/C3CE41524D CrossRefGoogle Scholar
  78. 78.
    Ryu HJ, Sanchez L, Keul HA et al (2008) Imidazolium-based ionic liquids as efficient shape-regulating solvents for the synthesis of gold nanorods. Angew Chem Int Ed 47:7639–7643. doi: 10.1002/anie.200802185 CrossRefGoogle Scholar
  79. 79.
    Wang Y, Maksimuk S, Shen R, Yang H (2007) Synthesis of iron oxide nanoparticles using a freshly-made or recycled imidazolium-based ionic liquid. Green Chem 9:1051–1056. doi: 10.1039/B618933D CrossRefGoogle Scholar
  80. 80.
    Wang Y, Yang H (2009) Synthesis of iron oxide nanorods and nanocubes in an imidazolium ionic liquid. Chem Eng J 147:71–78. doi: 10.1016/j.cej.2008.11.043 CrossRefGoogle Scholar
  81. 81.
    Jin R, Zhu Y, Qian H (2011) Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chem Eur J 17:6584–6593. doi: 10.1002/chem.201002390 CrossRefGoogle Scholar
  82. 82.
    Negishi Y, Nakazaki T, Malola S et al (2014) A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. J Am Chem Soc 137:1206–1212. doi: 10.1021/ja5109968 CrossRefGoogle Scholar
  83. 83.
    Yuan X, Yan N, Katsyuba SA et al (2012) A remarkable anion effect on palladium nanoparticle formation and stabilization in hydroxyl-functionalized ionic liquids. Phys Chem Chem Phys 14:6026. doi: 10.1039/c2cp23931k CrossRefGoogle Scholar
  84. 84.
    Biswas K, Rao CNR (2007) Use of ionic liquids in the synthesis of nanocrystals and nanorods of semiconducting metal chalcogenides. Chem Eur J 13:6123–6129. doi: 10.1002/chem.200601733 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire de Chimie de Coordination, CNRS; LCCToulouseFrance
  2. 2.Université de Toulouse; UPS, INPT; LCCToulouseFrance

Personalised recommendations