Advertisement

Transition Metal-Mediated and Metal-Catalyzed Carbon–Fluorine Bond Formation

  • Michael G. Campbell
  • Andrew J. Hoover
  • Tobias Ritter
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 52)

Abstract

The development of new C–F bond forming reactions from organotransition metal complexes has played a key role in advancing the field of fluorination chemistry and has allowed for improved access to fluorinated organic molecules of interest in medicine, materials, and agrochemicals. In this review, we describe the development of transition metal-mediated and metal-catalyzed fluorination methods over the past decade. Special attention is paid to the variety of organometallic mechanisms by which C–F bond formation can occur and the strengths and limitations of different approaches.

Keywords

Catalysis C–H functionalization Fluorine Transition metals 

References

  1. 1.
    Furuya T, Ritter T (2008) J Am Chem Soc 130:10060–10061Google Scholar
  2. 2.
    Furuya T, Benitez D, Tkatchouk E et al (2010) J Am Chem Soc 132:3793–3807Google Scholar
  3. 3.
    Grushin VV (2010) Acc Chem Res 43:160–171Google Scholar
  4. 4.
    Brown JM, Gouverneur V (2009) Angew Chem Int Ed 48:8610–8614Google Scholar
  5. 5.
    Furuya T, Klein JEMN, Ritter T (2010) Synthesis 2010:1804–1821Google Scholar
  6. 6.
    Furuya T, Kamlet AS, Ritter T (2011) Nature 473:470–477Google Scholar
  7. 7.
    Liang T, Neumann CN, Ritter T (2013) Angew Chem Int Ed 52:8214–8264Google Scholar
  8. 8.
    O'Hair RA, Davico GE, Hacaloglu J et al (1994) J Am Chem Soc 116:3609–3610Google Scholar
  9. 9.
    Kim DW, Ahn D-S, Oh Y-H et al (2006) J Am Chem Soc 128:16394–16397Google Scholar
  10. 10.
    Oh Y-H, Ahn D-S, Chung S-Y et al (2007) J Phys Chem A 111:10152–10161Google Scholar
  11. 11.
    Pliego JR, Piló-Veloso D (2007) J Phys Chem B 111:1752–1758Google Scholar
  12. 12.
    Luo YR (2002) Handbook of bond dissociation energies in organic compounds. CRC, Boca RatonGoogle Scholar
  13. 13.
    Trost BM, Van Vranken DL (1996) Chem Rev 96:395–422Google Scholar
  14. 14.
    Lu Z, Ma S (2008) Angew Chem Int Ed 47:258–297Google Scholar
  15. 15.
    Trost BM, Zhang T, Sieber JD (2010) Chem Sci 1:427Google Scholar
  16. 16.
    Pacheco MC, Purser S, Gouverneur V (2008) Chem Rev 108:1943–1981Google Scholar
  17. 17.
    Hintermann L, Läng F, Maire P, Togni A (2006) Eur J Inorg Chem 2006:1397–1412Google Scholar
  18. 18.
    Katcher MH, Doyle AG (2010) J Am Chem Soc 132:17402–17404Google Scholar
  19. 19.
    Trost BM, Verhoeven TR (1980) J Am Chem Soc 102:4730–4743Google Scholar
  20. 20.
    Trost BM, Machacek MR, Aponick A (2006) Acc Chem Res 39:747–760Google Scholar
  21. 21.
    Trost BM, Van Vranken DL, Bingel C (1992) J Am Chem Soc 114:9327–9343Google Scholar
  22. 22.
    Katcher MH, Sha A, Doyle AG (2011) J Am Chem Soc 133:15902–15905Google Scholar
  23. 23.
    Braun M-G, Katcher MH, Doyle AG (2013) Chem Sci 4:1216Google Scholar
  24. 24.
    Hollingworth C, Hazari A, Hopkinson MN et al (2011) Angew Chem Int Ed 50:2613–2617Google Scholar
  25. 25.
    Hazari A, Gouverneur V, Brown JM (2009) Angew Chem Int Ed 48:1296–1299Google Scholar
  26. 26.
    Topczewski JJ, Tewson TJ, Nguyen HM (2011) J Am Chem Soc 133:19318–19321Google Scholar
  27. 27.
    Zhu J, Tsui GC, Lautens M (2012) Angew Chem Int Ed 51:12353–12356Google Scholar
  28. 28.
    Zhang Q, Nguyen HM (2013) Chem Sci 5:291Google Scholar
  29. 29.
    Lauer AM, Wu J (2012) Org Lett 14:5138–5141Google Scholar
  30. 30.
    Katcher MH, Norrby P-O, Doyle AG (2014) Organometallics 33:2121–2133Google Scholar
  31. 31.
    Qin C, Davies HML (2013) Org Lett 15:6152–6154Google Scholar
  32. 32.
    Bruns S, Haufe G (2000) J Fluor Chem 104:247–254Google Scholar
  33. 33.
    Haufe G, Bruns S (2002) Adv Synth Catal 344:165–171Google Scholar
  34. 34.
    Martinez LE, Leighton JL, Carsten DH, Jacobsen EN (1995) J Am Chem Soc 117:5897–5898Google Scholar
  35. 35.
    Kalow JA, Doyle AG (2010) J Am Chem Soc 132:3268–3269Google Scholar
  36. 36.
    Kalow JA, Doyle AG (2013) Tetrahedron 69:5702–5709Google Scholar
  37. 37.
    Kalow JA, Doyle AG (2011) J Am Chem Soc 133:16001–16012Google Scholar
  38. 38.
    Graham TJA, Lambert RF, Ploessl K et al (2014) J Am Chem Soc 136:5291–5294Google Scholar
  39. 39.
    Liu Y, Chen C, Li H et al (2013) Organometallics 32:6587–6592Google Scholar
  40. 40.
    Dang H, Mailig M, Lalic G (2014) Angew Chem Int Ed 53:6473–6476Google Scholar
  41. 41.
    Anderson CM, Crespo M, Ferguson G et al (1992) Organometallics 11:1177–1181Google Scholar
  42. 42.
    Hughes RP, Laritchev RB, Zakharov LN, Rheingold AL (2005) Organometallics 24:4845–4848Google Scholar
  43. 43.
    Hull KL, Anani WQ, Sanford MS (2006) J Am Chem Soc 128:7134–7135Google Scholar
  44. 44.
    Racowski JM, Gary JB, Sanford MS (2012) Angew Chem Int Ed 51:3414–3417Google Scholar
  45. 45.
    Kaspi AW, Goldberg I, Vigalok A (2010) J Am Chem Soc 132:10626–10627Google Scholar
  46. 46.
    Zhao S-B, Becker JJ, Gagné MR (2011) Organometallics 30:3926–3929Google Scholar
  47. 47.
    Cochrane NA, Nguyen H, Gagné MR (2013) J Am Chem Soc 135:628–631Google Scholar
  48. 48.
    Geier MJ, Dadkhah Aseman M, Gagné MR (2014) Organometallics. doi: 10.1021/om5006929
  49. 49.
    Mankad NP, Toste FD (2011) Chem Sci 3:72Google Scholar
  50. 50.
    Qiu S, Xu T, Zhou J et al (2010) J Am Chem Soc 132:2856–2857Google Scholar
  51. 51.
    Talbot EPA, Fernandes TA, McKenna JM, Toste FD (2014) J Am Chem Soc 136:4101–4104Google Scholar
  52. 52.
    Bloom S, Pitts CR, Miller DC et al (2012) Angew Chem Int Ed 51:10580–10583Google Scholar
  53. 53.
    Pitts CR, Bloom S, Woltornist R et al (2014) J Am Chem Soc 136:9780–9791Google Scholar
  54. 54.
    Ollivier C, Renaud P (2001) Chem Rev 101:3415–3434Google Scholar
  55. 55.
    Halperin SD, Fan H, Chang S et al (2014) Angew Chem Int Ed 53:4690–4693Google Scholar
  56. 56.
    Hill CL (1995) Synlett 1995:127–132Google Scholar
  57. 57.
    Xia J-B, Ma Y, Chen C (2014) Org Chem Front 1:468Google Scholar
  58. 58.
    Bloom S, Pitts CR, Woltornist R et al (2013) Org Lett 15:1722–1724Google Scholar
  59. 59.
    Bloom S, Sharber SA, Holl MG et al (2013) J Org Chem 78:11082–11086Google Scholar
  60. 60.
    Xu P, Guo S, Wang L, Tang P (2014) Angew Chem Int Ed 53:5955–5958Google Scholar
  61. 61.
    Yin F, Wang Z, Li Z, Li C (2012) J Am Chem Soc 134:10401–10404Google Scholar
  62. 62.
    Rueda-Becerril M, Mahé O, Drouin M et al (2014) J Am Chem Soc 136:2637–2641Google Scholar
  63. 63.
    Barker TJ, Boger DL (2012) J Am Chem Soc 134:13588–13591Google Scholar
  64. 64.
    Shigehisa H, Nishi E, Fujisawa M, Hiroya K (2013) Org Lett 15:5158–5161Google Scholar
  65. 65.
    Li Z, Song L, Li C (2013) J Am Chem Soc 135:4640–4643Google Scholar
  66. 66.
    Zhang C, Li Z, Zhu L et al (2013) J Am Chem Soc 135:14082–14085Google Scholar
  67. 67.
    Wang H, Guo L-N, Duan X-H (2014) Chem Commun 50:7382Google Scholar
  68. 68.
    Villalba G, Ayres RU, Schroder H (2007) J Ind Ecol 11:85–101Google Scholar
  69. 69.
    Wu T, Yin G, Liu G (2009) J Am Chem Soc 131:16354–16355Google Scholar
  70. 70.
    McMurtrey KB, Racowski JM, Sanford MS (2012) Org Lett 14:4094–4097Google Scholar
  71. 71.
    Lu D-F, Liu G-S, Zhu C-L et al (2014) Org Lett 16:2912–2915Google Scholar
  72. 72.
    Liu W, Huang X, Cheng MJ et al (2012) Science 337:1322–1325Google Scholar
  73. 73.
    Liu W, Groves JT (2013) Angew Chem Int Ed 52:6024–6027Google Scholar
  74. 74.
    Huang X, Liu W, Ren H et al (2014) J Am Chem Soc 136:6842–6845Google Scholar
  75. 75.
    Brandt JR, Lee E, Boursalian GB, Ritter T (2014) Chem Sci 5:169–179Google Scholar
  76. 76.
    Chen MS, White MC (2004) J Am Chem Soc 126:1346–1347Google Scholar
  77. 77.
    Covell DJ, White MC (2008) Angew Chem Int Ed Engl 47:6448–6451Google Scholar
  78. 78.
    Braun M-G, Doyle AG (2013) J Am Chem Soc 135:12990–12993Google Scholar
  79. 79.
    Kirsch P (2004) Modern fluoroorganic chemistry: synthesis, reactivity, applications. Wiley, New YorkGoogle Scholar
  80. 80.
    Gottlieb HB (1936) J Am Chem Soc 58:532–533Google Scholar
  81. 81.
    Finger GC, Kruse CW (1956) J Am Chem Soc 78:6034–6037Google Scholar
  82. 82.
    Grushin VV, Marshall WJ (2008) Organometallics 27:4825–4828Google Scholar
  83. 83.
    Sheppard TD (2009) Org Biomol Chem 7:1043Google Scholar
  84. 84.
    Wu X-F, Anbarasan P, Neumann H, Beller M (2010) Angew Chem Int Ed 49:9047–9050Google Scholar
  85. 85.
    Hartwig JF (2008) Nature 455:314–322Google Scholar
  86. 86.
    Hartwig JF (1998) Acc Chem Res 31:852–860Google Scholar
  87. 87.
    Muci AR, Buchwald SL (2001) In: Miyaura N (ed) Topics in current chemistry. Springer, New York, pp 131–209Google Scholar
  88. 88.
    Ishiyama T, Murata M, Miyaura N (1995) J Org Chem 60:7508–7510Google Scholar
  89. 89.
    Molander GA, Trice SLJ, Dreher SD (2010) J Am Chem Soc 132:17701–17703Google Scholar
  90. 90.
    Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483Google Scholar
  91. 91.
    Paul F, Patt J, Hartwig JF (1994) J Am Chem Soc 116:5969–5970Google Scholar
  92. 92.
    Guram AS, Buchwald SL (1994) J Am Chem Soc 116:7901–7902Google Scholar
  93. 93.
    Biscoe MR, Fors BP, Buchwald SL (2008) J Am Chem Soc 130:6686–6687Google Scholar
  94. 94.
    Fors BP, Buchwald SL (2010) J Am Chem Soc 132:15914–15917Google Scholar
  95. 95.
    Burgos CH, Barder TE, Huang X, Buchwald SL (2006) Angew Chem Int Ed 45:4321–4326Google Scholar
  96. 96.
    Gowrisankar S, Sergeev AG, Anbarasan P et al (2010) J Am Chem Soc 132:11592–11598Google Scholar
  97. 97.
    Fraser SL, Antipin MY, Khroustalyov VN, Grushin VV (1997) J Am Chem Soc 119:4769–4770Google Scholar
  98. 98.
    Pilon MC, Grushin VV (1998) Organometallics 17:1774–1781Google Scholar
  99. 99.
    Marshall WJ, Thorn DL, Grushin VV (1998) Organometallics 17:5427–5430Google Scholar
  100. 100.
    Grushin VV (2002) Chem Eur J 8:1006–1014Google Scholar
  101. 101.
    Grushin VV, Marshall WJ (2004) J Am Chem Soc 126:3068–3069Google Scholar
  102. 102.
    Macgregor SA, Roe DC, Marshall WJ et al (2005) J Am Chem Soc 127:15304–15321Google Scholar
  103. 103.
    Yandulov DV, Tran NT (2007) J Am Chem Soc 129:1342–1358Google Scholar
  104. 104.
    Grushin VV, Marshall WJ (2007) Organometallics 26:4997–5002Google Scholar
  105. 105.
    Watson DA, Su M, Teverovskiy G et al (2009) Science 325:1661–1664Google Scholar
  106. 106.
    Noël T, Maimone TJ, Buchwald SL (2011) Angew Chem Int Ed 50:8900–8903Google Scholar
  107. 107.
    Regalado EL, Kozlowski MC, Curto JM et al (2014) Org Biomol Chem 12:2161Google Scholar
  108. 108.
    Maimone TJ, Milner PJ, Kinzel T et al (2011) J Am Chem Soc 133:18106–18109Google Scholar
  109. 109.
    Lee HG, Milner PJ, Buchwald SL (2013) Org Lett 15:5602–5605Google Scholar
  110. 110.
    Lee HG, Milner PJ, Buchwald SL (2014) J Am Chem Soc 136:3792–3795Google Scholar
  111. 111.
    Casitas A, Canta M, Solà M et al (2011) J Am Chem Soc 133:19386–19392Google Scholar
  112. 112.
    Fier PS, Hartwig JF (2012) J Am Chem Soc 134:10795–10798Google Scholar
  113. 113.
    Mu X, Zhang H, Chen P, Liu G (2014) Chem Sci 5:275–280Google Scholar
  114. 114.
    Van Der Puy M (1982) J Fluor Chem 21:385–392Google Scholar
  115. 115.
    Ichiishi N, Canty AJ, Yates BF, Sanford MS (2013) Org Lett 15:5134–5137Google Scholar
  116. 116.
    Ichiishi N, Brooks AF, Topczewski JJ et al (2014) Org Lett 16:3224–3227Google Scholar
  117. 117.
    Diorazio LJ, Widdowson DA, Clough JM (1992) Tetrahedron 48:8073–8088Google Scholar
  118. 118.
    Cazorla C, Métay E, Andrioletti B, Lemaire M (2009) Tetrahedron Lett 50:3936–3938Google Scholar
  119. 119.
    Coenen HH, Moerlein SM (1987) J Fluor Chem 36:63–75Google Scholar
  120. 120.
    Adam MJ, Berry JM, Hall LD et al (1983) Can J Chem 61:658–660Google Scholar
  121. 121.
    De Meio GV, Pinhey JT (1990) J Chem Soc Chem Commun 1065Google Scholar
  122. 122.
    De Meio G, Morgan J, Pinhey JT (1993) Tetrahedron 49:8129–8138Google Scholar
  123. 123.
    Bryce MR, Chambers RD, Mullins ST, Parkin A (1984) J Fluor Chem 26:533–534Google Scholar
  124. 124.
    Visser GWM, Halteren von BW, Herscheid JDM et al (1984) J Chem Soc Chem Commun 655Google Scholar
  125. 125.
    Visser GW, Bakker CN, Van Halteren BW et al (1986) J Org Chem 51:1886–1889Google Scholar
  126. 126.
    Butin KP, Kiselev YM, Magdesieva TV, Reutov OA (1982) J Organomet Chem 235:127–133Google Scholar
  127. 127.
    Lothian AP, Ramsden CA (1993) Synlett 1993:753–755Google Scholar
  128. 128.
    Tredwell M, Gouverneur V (2006) Org Biomol Chem 4:26Google Scholar
  129. 129.
    Di Raddo P, Diksic M, Jolly D (1984) J Chem Soc Chem Commun 159Google Scholar
  130. 130.
    Speranza M, Shiue C-Y, Wolf AP et al (1985) J Fluor Chem 30:97–107Google Scholar
  131. 131.
    Coe PL, Stuart AM, Moody DJ (1998) J Fluor Chem 92:27–32Google Scholar
  132. 132.
    Stuart AM, Coe PL, Moody DJ (1998) J Fluor Chem 88:179–184Google Scholar
  133. 133.
    Adam MJ, Pate BD, Ruth TJ et al (1981) J Chem Soc Chem Commun 733Google Scholar
  134. 134.
    Adam MJ, Ruth TJ, Jivan S, Pate BD (1984) J Fluor Chem 25:329–337Google Scholar
  135. 135.
    Bryce MR, Chambers RD, Mullins ST, Parkin A (1986) J Chem Soc Chem Commun 1623Google Scholar
  136. 136.
    Hodson HF, Madge DJ, Widdowson DA (1992) Synlett 1992:831–832Google Scholar
  137. 137.
    Matthews DP, Miller SC, Jarvi ET et al (1993) Tetrahedron Lett 34:3057–3060Google Scholar
  138. 138.
    Tius MA, Kawakami JK (1992) Synth Commun 22:1461–1471Google Scholar
  139. 139.
    Banks RE, Mohialdin-Khaffaf SN, Lal GS et al (1992) J Chem Soc Chem Commun 595Google Scholar
  140. 140.
    Differding E, Ofner H (1991) Synlett 187–189Google Scholar
  141. 141.
    Barnette WE (1984) J Am Chem Soc 106:452–454Google Scholar
  142. 142.
    Differding E, Lang RW (1989) Helv Chim Acta 72:1248–1252Google Scholar
  143. 143.
    Davis FA, Han W, Murphy CK (1995) J Org Chem 60:4730–4737Google Scholar
  144. 144.
    Resnati G, DesMarteau DD (1991) J Org Chem 56:4925–4929Google Scholar
  145. 145.
    Umemoto T, Tomita K (1986) Tetrahedron Lett 27:3271–3274Google Scholar
  146. 146.
    Umemoto T, Kawada K, Tomita K (1986) Tetrahedron Lett 27:4465–4468Google Scholar
  147. 147.
    Umemoto T, Tomizawa G (1987) Tetrahedron Lett 28:2705–2708Google Scholar
  148. 148.
    Umemoto T, Fukami S, Tomizawa G et al (1990) J Am Chem Soc 112:8563–8575Google Scholar
  149. 149.
    Umemoto T, Tomizawa G (1995) J Org Chem 60:6563–6570Google Scholar
  150. 150.
    Umemoto T, Nagayoshi M, Adachi K, Tomizawa G (1998) J Org Chem 63:3379–3385Google Scholar
  151. 151.
    Furuya T, Kaiser HM, Ritter T (2008) Angew Chem Int Ed 47:5993–5996Google Scholar
  152. 152.
    Furuya T, Benitez D, Tkatchouk E et al (2010) J Am Chem Soc 132:5922–5922Google Scholar
  153. 153.
    Lee E, Kamlet AS, Powers DC et al (2011) Science 334:639–642Google Scholar
  154. 154.
    Kamlet AS, Neumann CN, Lee E et al (2013) PLoS One 8:e59187Google Scholar
  155. 155.
    Ball ND, Sanford MS (2009) J Am Chem Soc 131:3796–3797Google Scholar
  156. 156.
    Tius MA, Kawakami JK (1993) Synlett 207–208Google Scholar
  157. 157.
    Tius MA, Kawakami JK (1995) Tetrahedron 51:3997–4010Google Scholar
  158. 158.
    Furuya T, Ritter T (2009) Org Lett 11:2860–2863Google Scholar
  159. 159.
    Tang P, Ritter T (2011) Tetrahedron 67:4449–4454Google Scholar
  160. 160.
    Furuya T, Strom AE, Ritter T (2009) J Am Chem Soc 131:1662–1663Google Scholar
  161. 161.
    Tang P, Furuya T, Ritter T (2010) J Am Chem Soc 132:12150–12154Google Scholar
  162. 162.
    Teare H, Robins EG, Kirjavainen A et al (2010) Angew Chem Int Ed 49:6821–6824Google Scholar
  163. 163.
    Stenhagen ISR, Kirjavainen AK, Forsback SJ et al (2013) Chem Commun 49:1386Google Scholar
  164. 164.
    Powers DC, Benitez D, Tkatchouk E et al (2010) J Am Chem Soc 132:14092–14103Google Scholar
  165. 165.
    Powers DC, Ritter T (2012) Acc Chem Res 45:840–850Google Scholar
  166. 166.
    Fier PS, Luo J, Hartwig JF (2013) J Am Chem Soc 135:2552–2559Google Scholar
  167. 167.
    Ye Y, Sanford MS (2013) J Am Chem Soc 135:4648–4651Google Scholar
  168. 168.
    Desai LV, Stowers KJ, Sanford MS (2008) J Am Chem Soc 130:13285–13293Google Scholar
  169. 169.
    Stowers KJ, Sanford MS (2009) Org Lett 11:4584–4587Google Scholar
  170. 170.
    Powers DC, Ritter T (2009) Nat Chem 1:302–309Google Scholar
  171. 171.
    Wang X, Mei TS, Yu J-Q (2009) J Am Chem Soc 131:7520–7521Google Scholar
  172. 172.
    Chan KSL, Wasa M, Wang X, Yu J-Q (2011) Angew Chem Int Ed 50:9081–9084Google Scholar
  173. 173.
    Lou S-J, Xu D-Q, Xia A-B et al (2013) Chem Commun 49:6218Google Scholar
  174. 174.
    Ding Q, Ye C, Pu S, Cao B (2014) Tetrahedron 70:409–416Google Scholar
  175. 175.
    Lou S-J, Xu D-Q, Xu Z-Y (2014) Angew Chem Int Ed 53:10330–10335Google Scholar
  176. 176.
    Fier PS, Hartwig JF (2013) Science 342:956–960Google Scholar
  177. 177.
    Mazzotti AR, Campbell MG, Tang P et al (2013) J Am Chem Soc 135:14012–14015Google Scholar
  178. 178.
    Truong T, Klimovica K, Daugulis O (2013) J Am Chem Soc 135:9342–9345Google Scholar
  179. 179.
    Lee E, Hooker JM, Ritter T (2012) J Am Chem Soc 134:17456–17458Google Scholar
  180. 180.
    Ametamey SM, Honer M, Schubiger PA (2008) Chem Rev 108:1501–1516Google Scholar
  181. 181.
    Ren H, Wey H-Y, Strebl M et al (2014) ACS Chem Neurosci 5:611–615Google Scholar
  182. 182.
    Ye Y, Schimler SD, Hanley PS, Sanford MS (2013) J Am Chem Soc 135:16292–16295Google Scholar
  183. 183.
    Tredwell M, Preshlock SM, Taylor NJ et al (2014) Angew Chem Int Ed 53:7751–7755Google Scholar
  184. 184.
    Lontz JF, Happoldt WB (1952) Ind Eng Chem 44:1800–1805Google Scholar
  185. 185.
    Berry KL, Peterson JH (1951) J Am Chem Soc 73:5195–5197Google Scholar
  186. 186.
    Bartlett PA, Otake A (1995) J Org Chem 60:3107–3111Google Scholar
  187. 187.
    Abraham RJ, Ellison S, Schonholzer P, Thomas WA (1986) Tetrahedron 42:2101–2110Google Scholar
  188. 188.
    Allmendinger T, Furet P, Hungerbühler E (1990) Tetrahedron Lett 31:7297–7300Google Scholar
  189. 189.
    Allmendinger T, Felder E, Hungarbühler E (1990) Tetrahedron Lett 31:7301–7304Google Scholar
  190. 190.
    Boros LG, De Corte B, Gimi RH et al (1994) Tetrahedron Lett 35:6033–6036Google Scholar
  191. 191.
    Hayashi S-I, Nakai T, Ishikawa N et al (1979) Chem Lett 983–986Google Scholar
  192. 192.
    Dixon DA, Smart BE (1986) J Am Chem Soc 108:7172–7177Google Scholar
  193. 193.
    Welch JT, Herbert RW (1990) J Org Chem 55:4782–4784Google Scholar
  194. 194.
    Prakash GKS, Shakhmin A, Zibinsky M et al (2010) J Fluor Chem 131:1192–1197Google Scholar
  195. 195.
    Zhu L, Ni C, Zhao Y, Hu J (2010) Tetrahedron 66:5089–5100Google Scholar
  196. 196.
    Akana JA, Bhattacharyya KX, Müller P, Sadighi JP (2007) J Am Chem Soc 129:7736–7737Google Scholar
  197. 197.
    Gorske BC, Mbofana CT, Miller SJ (2009) Org Lett 11:4318–4321Google Scholar
  198. 198.
    Schuler M, Silva F, Bobbio C et al (2008) Angew Chem Int Ed 47:7927–7930Google Scholar
  199. 199.
    de Haro T, Nevado C (2010) Chem Commun 47:248Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael G. Campbell
    • 1
  • Andrew J. Hoover
    • 1
  • Tobias Ritter
    • 1
  1. 1.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA

Personalised recommendations