Advertisement

Ionic Liquids in Transition Metal-Catalyzed Hydroformylation Reactions

  • Bernhard Rieger
  • Andriy Plikhta
  • Dante A. Castillo-Molina
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 51)

Abstract

The latest state of the art in ionic liquid-based hydroformylation is reviewed in detail in this chapter. This multiphase homogenous catalytic system represents a promising strategy in order to reduce catalyst leaching during product separation and achieve the desired ratio of linear-to-branched aldehyde with a high catalytic activity and yield. A series of different catalytic systems, ionic liquids (ILs), and ligands together with their application in the hydroformylation of a variety of alkenes is presented. The features of those ILs derived from their composition and their interactions with substrates and catalysts are also discussed. In addition, recent studies on the catalyst distribution in the bulk and on the surface of ILs are summarized. Herein, the properties of the ligands show an impact in the activity and selectivity of the reaction. Moreover, not only Co and Rh complexes can be applied in the hydroformylation in ILs but also Pt and Ru complexes. On the other hand, the uses of CO2 as chemical C1 feedstock or scCO2 as carrier for the reagents and products in the hydroformylation reaction are commented. Catalytic processes where supported ionic liquid phases (SILPs) and nanocatalysts intervened complement this work.

Keywords

Alkenes Hydroformylation Ionic liquids scCO2 SILP 

Abbreviations

[4-mbpy][Cl]

1-N-n-Butyl-4-methylpyridinium chloride

[b((MeOSi)3p)im][Cl]

1-Butyl-3-[3-(trimethoxysilyl)propyl]imidazolium chloride

[bdmim][PF6]

1,2-Dimethyl-3-butylimidazolium hexafluorophosphate

[bmim][BF4]

1-n-Butyl-3-methylimidazolium tetrafluoroborate

[bmim][Cl]

1-n-Butyl-3-methylimidazolium chloride

[bmim][Co(CO)4]

1-n-Butyl-3-methylimidazolium tetracarbonylcobaltate

[bmim][n-C12H25OSO3]

1-n-Butyl-3-methylimidazolium n-dodecylsulfate

[bmim][n-C8H17OSO3]

1-n-Butyl-3-methylimidazolium n-octylsulfate

[bmim][p-C6H4SO3]

1-n-Butyl-3-methylimidazolium para-toluenesulfonate

[bmim][PF6]

1-n-Butyl-3-methylimidazolium hexafluorophosphate

[bmim][Tf2N]

1-n-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

[bmim][TfO]

1-n-Butyl-3-methylimidazolium trifluoromethanesulfonate

[bpy][BF4]

N-n-Butylpyridinium tetrafluoroborate

[bpy][Tf2N]

N-n-Butylpyridinium bis(trifluoromethylsulfonyl)imide

[daim][An]

1,3-Dialkylimidazolium anion

[emim][C2H5OSO3]

1-Ethyl-3-methylimidazolium ethylsulfate

[emim][TfO]

1-Ethyl-3-methylimidazolium trifluoromethanesulfonate

[emmim][TfO]

1-Ethyl-2,3-dimethylimidazolium trifluoromethanesulfonate

[hmim][Tf2N]

1-n-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

[hmim][TfO]

1-n-Hexyl-3-methylimidazolium trifluoromethanesulfonate

[mbmim][TfO]

1-(2-Methyl-n-butyl)-3-methylimidazolium trifluoromethanesulfonate

[mg][Co(CO)4]

N-Methyl-guanidinium tetracarbonylcobaltate

[mtr][Co(CO)4]

1-Methyl-triazolium tetracarbonylcobaltate

[NBnEt3][Tf2N]

N-Benzyltriethylammonium bis(trifluoromethylsulfonyl)imide

[NBu4][BF4]

Tetra-n-butylammonium tetrafluoroborate

[NEt4][Tf2N]

Tetraethylammonium bis(trifluoromethylsulfo-nyl)imide

[NOc3Me][Tf2N]

N-Methyltri-n-octylammonium bis(trifluoromethylsulfonyl)imide

[omim][Tf2N]

1-n-Octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

[omim][TfO]

1-n-Octyl-3-methylimidazolium trifluoromethanesulfonate

[P(C4H9)3(C14H29)][DBS]

Tri(n-butyl)-n-tetradecylphosphonium dodecyl-benzenesulfonate

[P(C4H9)3(C2H5)][DEP]

Tri(n-butyl)ethylphosphonium diethylphosphate

[P(C6H13)3(C14H29)][Cl]

Tri(n-hexyl)-n-tetradecylphosphonium chloride

[P(C6H13)3(C14H29)][DCA]

Tri(n-hexyl)-n-tetradecylphosphonium dicyanamide

[P(C6H13)3(C14H29)][Tf2N]

Tri(n-hexyl)-n-tetradecylphosphonium bis(tri-fluoromethylsulfonyl)imide

[PEmim][PF6]

1-(2′-Piperid-1′-yl-ethyl)-3-methylimidazolium hexafluorophosphate

[PEmmim][PF6]

1-(2′-Piperid-1′-yl-ethyl)-2-methyl-3-methylimidazolium hexafluorophosphate

[prmim][TPPMS]

1-n-Propyl-3-methylimidazolium triphenyl-phosphine-3-monosulfonate

[prmim]2[TPPDS]

1-n-Propyl-3-methylimidazolium triphenyl-phosphine-3,3'-disulfonate

[tmg][Co(CO)4]

N,N-Tetramethyl-guanidinium tetracarbonylcobaltate

[tmim][TfO]

1,2,3-Trimethylimidazolium trifluoromethanesulfonate

2-(DPP-C6H4)-[mmim][BF4]

2-Diphenylphosphinophenylen-1,3-dimethylimidazolium tetrafluoroborate

2-DPP-[mbim][PF6]

1-n-Butyl-2-diphenylphosphino-3-methylimidazolium hexafluorophosphate

2-DPP-[PEmmim][PF6]

1-(2′-Piperid-1′-yl-ethyl)-2-diphenylphosphino-3-methylimidazolium hexafluorophosphate

bim(B(C6H5)3)

(3-n-Butylimidazole)triphenylboron

Co

Cobalt

CO

Carbonyl or carbon monoxide

COD

Cycloocta-1,5-diene

DPP-Cobaltocene

1,1′-Bis(diphenylphosphino)cobaltocenium hexafluorophosphate

DPPiPr-Cobaltocene

1,1′-Bis(diphenylphosphino)-iso-propylcobaltocenium hexafluorophosphate

EDX

Energy-dispersive X-ray spectroscopy

FTIR

Fourier transform infrared spectroscopy

ILCs

Ionic liquid crystals

IR

Infrared

m.p.

Melting point

MAS

Magic angle spinning

MCILs

Metal-containing ionic liquids

MCM-41

Mesoporous silica nanoparticles

NHCs

N-heterocyclic carbenes

nm

Nanometer

NMR

Nuclear magnetic resonance

NORBOS-Cs3

Tricesium 3,4-dimethyl-2,5,6-tris(p-sulfonato-phenyl)-1-phosphanorbornadiene

NPs

Nanoparticles

OPGPP

Octylpolyethyleneglycol-phenylene-phosphite

P

Phosphorus

PEG

Polyethylene glycol

PFILs

Phosphine-functionalized phosphonium ILs

PGMILs

Polyether guanidinium methanesulfonates ILs

POP-Xantphos-2[mmim][PF6]

Phenoxaphosphino-modified Xantphos

ppb

Parts per billion

Pt

Platinum

PTSA

para-Toluene sulfonic acid

Rh

Rhodium

Rh(CO)2(acac)

(Acetylacetonato)dicarbonylrhodium(I)

rt

Room temperature

Ru

Ruthenium

scCO2

Supercritical carbon dioxide

SCF

Supercritical fluid

SEM

Scanning electron microscopy

SILP

Supported ionic liquid phase

TEM

Transmission electron microscopy

Tg

Glass-transition temperature

TMGL

1,1,3,3-Tetramethylguanidinium lactate

TOF

Turn over frequency

TOMAC

Trioctylmethylammonium chloride

TON

Turn over number

TPP, PPh3

Triphenylphosphine

TPPDS

Disodium triphenylphosphine-3,3′-disulfonate

TPPMS

Sodium triphenylphosphine-3-monosulfonate

TPPTI

Tri(1,2-dimethyl-3-n-butyl-imidazolium) triphenylphosphine-3,3′,3″-trisulfonate

TPPTS

Trisodium triphenylphosphine-3,3′,3″-trisulfonate

XRD

X‐ray diffractometry

References

  1. 1.
    Franke R, Selent D, Börner A (2012) Chem Rev 112:5675–5732Google Scholar
  2. 2.
    Cornils B, Herrmann WA, Rasch M (1994) Angew Chem Int Ed 33:2144–2163Google Scholar
  3. 3.
    Magna L, Harry S, Faraj A, Olivier-Bourbigou H (2013) Oil Gas Sci Technol Rev IFP Energies Nouvelles 68:415–428Google Scholar
  4. 4.
    Kohlpaintner CW, Fischer RW, Cornils B (2001) Appl Catal A 221:219–225Google Scholar
  5. 5.
    Ungvary F (2002) Coord Chem Rev 228:61–82Google Scholar
  6. 6.
    Ungvary F (2005) Coord Chem Rev 249:2946–2961Google Scholar
  7. 7.
    Ungvary F (2007) Coord Chem Rev 251:2072–2086Google Scholar
  8. 8.
    Ungvary F (2007) Coord Chem Rev 251:2087–2102Google Scholar
  9. 9.
    Marteel AE, Davies JA, Olson WW, Abraham MA (2003) Annu Rev Env Resour 28:401–428Google Scholar
  10. 10.
    Joo F, Papp E, Katho A (1998) Top Catal 5:113–124Google Scholar
  11. 11.
    Deshpande RM, Kelkar AA, Sharma A, Julcour-Lebigue C, Delmas H (2011) Chem Eng Sci 66:1631–1639Google Scholar
  12. 12.
    Silva SM, Bronger RPJ, Freixa Z, Dupont J, van Leeuwen P (2003) New J Chem 27:1294–1296Google Scholar
  13. 13.
    Dyson P, Tilmann G (2005) Catalysis by metal complexes, vol 29. Springer, The Netherlands, p 246Google Scholar
  14. 14.
    Werner S, Haumann M, Wasserscheid P (2010) Annu Rev Chem Biomol 1:203–230Google Scholar
  15. 15.
    Dümbgen G, Neubauer D (1969) Chem Ing Tech 41:974–980Google Scholar
  16. 16.
    Obrecht L, Kamer PCJ, Laan W (2013) Catal Sci Technol 3:541–551Google Scholar
  17. 17.
    Wasserscheid P (2003) Chem Unserer Zeit 37:52–63Google Scholar
  18. 18.
    Davis JH (2004) Chem Lett 33:1072–1077Google Scholar
  19. 19.
    Welton T (2004) Coord Chem Rev 248:2459–2477Google Scholar
  20. 20.
    Plechkova NV, Seddon KR (2008) Chem Soc Rev 37:123–150Google Scholar
  21. 21.
    Dupont J, Consorti CS, Spencer J (2000) J Braz Chem Soc 11:337–344Google Scholar
  22. 22.
    Chauvin Y, Mussmann L, Olivier H (1995) Angew Chem Int Ed 34:2698–2700Google Scholar
  23. 23.
    Parshall GW (1972) J Am Chem Soc 94:8716–8719Google Scholar
  24. 24.
    Panda AG, Bhor MD, Jagtap SR, Bhanage BM (2008) Appl Catal A-Gen 347:142–147Google Scholar
  25. 25.
    Paganelli S, Perosa A, Selva M (2007) Adv Synth Catal 349:1858–1862Google Scholar
  26. 26.
    Leclercq L, Suisse I, Agbossou-Niedercorn F (2008) Chem Commun 311–313Google Scholar
  27. 27.
    Keim W, Vogt D, Waffenschmidt H, Wasserscheid P (1999) J Catal 186:481–484Google Scholar
  28. 28.
    Wasserscheid P, Waffenschmidt H (2000) J Mol Catal A Chem 164:61–67Google Scholar
  29. 29.
    Dabbawala AA, Bajaj HC, Rao GVS, Abdi SHR (2012) Appl Catal A-Gen 419–420:185–193Google Scholar
  30. 30.
    Williams DBG, Ajam M, Ranwell A (2007) Organometallics 26:4692–4695Google Scholar
  31. 31.
    Scurto AM, Leitner W (2006) Chem Commun 3681–3683Google Scholar
  32. 32.
    Deng C, Ou G, She J, Yuan Y (2007) J Mol Catal A: Chem 270:76–82Google Scholar
  33. 33.
    Tominaga K, Sasaki Y (2004) Chem Lett 33:14–15Google Scholar
  34. 34.
    Tominaga K-i, Sasaki Y (2004) J Mol Catal A Chem 220:159–165Google Scholar
  35. 35.
    K-i T, Sasaki Y (2004) Stud. Surf Sci Catal 153:227–232Google Scholar
  36. 36.
    Chauvin Y, Olivier H, Mussmann L (1997) EP776880-AGoogle Scholar
  37. 37.
    Diao Y, Li J, Wang L, Yang P, Yan R, Jiang L, Zhang H, Zhang S (2013) Catal Today 200:54–62Google Scholar
  38. 38.
    Peng Q, Deng C, Yang Y, Dai M, Yuan Y (2007) React Kinet Catal Lett 90:53–60Google Scholar
  39. 39.
    Mehnert CP, Cook RA, Dispenziere NC, Mozeleski EJ (2004) Polyhedron 23:2679–2688Google Scholar
  40. 40.
    Bronger RPJ, Silva SM, Kamer PCJ, van Leeuwen P (2004) Dalton Trans: 1590-1596Google Scholar
  41. 41.
    Bronger RPJ, Silva SM, Kamer PCJ, van Leeuwen P (2002) Chem Commun 3044–3045Google Scholar
  42. 42.
    Magna L, Harry S, Proriol D, Saussine L, Olivier-Bourbigou H (2007) Oil Gas Sci Technol 62:775–780Google Scholar
  43. 43.
    Dengler JE, Doroodian A, Rieger B (2011) J Organomet Chem 696:3831–3835Google Scholar
  44. 44.
    Favre F, Olivier-Bourbigou H, Commereuc D, Saussine L (2001) Chem Commun 1360–1361Google Scholar
  45. 45.
    Lin Q, Jiang W, Fu H, Chen H, Li X (2007) Appl Catal A Gen 328:83–97Google Scholar
  46. 46.
    Brasse CC, Englert U, Salzer A, Waffenschmidt H, Wasserscheid P (2000) Organometallics 19:3818–3823Google Scholar
  47. 47.
    Wasserscheid P, van Hal R, Bosmann A (2002) Green Chem 4:400–404Google Scholar
  48. 48.
    Wasserscheid P, Waffenschmidt H, Machnitzki P, Kottsieper KW, Stelzer O (2001) Chem Commun 451–452Google Scholar
  49. 49.
    Brauer DJ, Kottsieper KW, Liek C, Stelzer O, Waffenschmidt H, Wasserscheid P (2001) J Organomet Chem 630:177–184Google Scholar
  50. 50.
    Kottsieper KW, Stelzer O, Wasserscheid P (2001) J Mol Catal A Chem 175:285–288Google Scholar
  51. 51.
    Luska KL, Demmans KZ, Stratton SA, Moores A (2012) Dalton Trans 41:13533–13540Google Scholar
  52. 52.
    Webb PB, Kunene TE, Cole-Hamilton DJ (2005) Green Chem 7:373–379Google Scholar
  53. 53.
    Xu Y, Wang Y, Zeng Y, Jiang J, Jin Z (2012) Catal Lett 142:914–919Google Scholar
  54. 54.
    Zeng Y, Wang Y, Xu Y, Song Y, Zhao J, Jiang J, Jin Z (2012) Chinese J Catal 33:402–406Google Scholar
  55. 55.
    Yang J, Li F-F, Zhang J, Li J, Wang W-X (2010) Helv Chim Acta 93:1653–1660Google Scholar
  56. 56.
    Hamza K, Schumann H, Blum J (2009) Eur J Org Chem 1502–1505Google Scholar
  57. 57.
    Jin X, Zhao K, Kong F, Cui F, Yang D (2013) Catal Lett 143:839–843Google Scholar
  58. 58.
    Chen S-J, Wang Y-Y, Yao W-M, Zhao X-L, Vo-Thanh G, Liu Y (2013) J Mol Catal A: Chem 378:293–298Google Scholar
  59. 59.
    Omotowa BA, Shreeve JM (2004) Organometallics 23:783–791Google Scholar
  60. 60.
    Dupont J, Silva SM, de Souza RF (2001) Catal Lett 77:131–133Google Scholar
  61. 61.
    Jin X, Yang D, Xu X, Yang Z (2012) Chem Commun 48:9017–9019Google Scholar
  62. 62.
    Stenzel O, Raubenheimer HG, Esterhuysen C (2002) J Chem Soc Dalton 1132–1138Google Scholar
  63. 63.
    Tan B, Jiang J, Wang Y, Wei L, Chen D, Jin Z (2008) Appl Organomet Chem 22:620–623Google Scholar
  64. 64.
    Kong FZ, Jiang JY, Jin ZL (2004) Catal Lett 96:63–65Google Scholar
  65. 65.
    Sharma A, Lebigue CJ, Deshpande RM, Kelkar AA, Delmas H (2010) Ind Eng Chem Res 49:10698–10706Google Scholar
  66. 66.
    Leclercq L, Lacour M, Sanon SH, Schmitzer AR (2009) Chem-Eur J 15:6327–6331Google Scholar
  67. 67.
    Frade RF, Afonso CA (2010) Hum Exp Toxicol 29:1038–1054Google Scholar
  68. 68.
    Haumann M, Riisager A (2008) Chem Rev 108:1474–1497Google Scholar
  69. 69.
    Welton T (1999) Chem Rev 99:2071–2083Google Scholar
  70. 70.
    Briggs JR, Maher JM, Harrison AM (1993) US5225387-AGoogle Scholar
  71. 71.
    Keim W, Waffenschmidt H, Wasserscheid P (2000) DE19901524-A1Google Scholar
  72. 72.
    Valkenberg M, Sauvage E, Castro-Moriera CP, Hoelderich WF (2000) WO 0132308AGoogle Scholar
  73. 73.
    Bahrmann H, Bohnen H (2000) EP1177163-B1Google Scholar
  74. 74.
    Favre F, Commereuc D, Olivier-Bourbigou H (2002) US6617474; EP1241156-A1Google Scholar
  75. 75.
    Favre F, Commereuc D, Olivier-Bourbigou H, Saussine L (2002) EP1182187-A1Google Scholar
  76. 76.
    Hillebrand G, Hirschauer A, Commereuc D, Olivier-Bourbigou H, Saussine L (2004) EP1106595-AGoogle Scholar
  77. 77.
    Bohnen H, Herwig J, Hoff D, Van Hal R, Wasserscheid P, Hal RV (2004) EP1400504-A1Google Scholar
  78. 78.
    Magna L, Olivier Bourbigou H, Saussine L, Kruger-Tissot V, Kruger TV (2003) EP1352889-A1Google Scholar
  79. 79.
    Magna L, Harry S, Olivier BH, Saussine L (2008) FR2903686-A1; FR2903686-B1Google Scholar
  80. 80.
    Magna L, Saussine L, Proriol D, Olivier-Bourbigou H (2008) FR2903687-A1; WO2008006951-A1Google Scholar
  81. 81.
    Francio G, Klankermayer J, Leitner W, Schmitkamp M, Dianjun C (2009) DE102007040333-A1Google Scholar
  82. 82.
    Lei Z, Dai C, Chen B (2013) Chem Rev doi: 10.1021/cr300497a
  83. 83.
    Dyson PJ, Laurenczy G, Andre Ohlin C, Vallance J, Welton T (2003) Chem Commun 2418–2419Google Scholar
  84. 84.
    Kumełan J, Pérez-Salado Kamps Á, Tuma D, Maurer G (2007) Fluid Phase Equilib 260:3–8Google Scholar
  85. 85.
    Ferguson L, Scovazzo P (2007) Ind Eng Chem Res 46:1369–1374Google Scholar
  86. 86.
    Hintermair U, Zhao G, Santini CC, Muldoon MJ, Cole-Hamilton DJ (2007) Chem Commun 1462–1464Google Scholar
  87. 87.
    Cornlis B, Herrmann WA (1998) Aqueous-phase organometallic catalysis. Wiley-VCH, WeinheimGoogle Scholar
  88. 88.
    Lin Q, Fu H, Jiang W, Chen H, Li X (2007) J Chem Res S 216–220Google Scholar
  89. 89.
    You H, Wang Y, Zhao X, Chen S, Liu Y (2013) Organometallics 32:2698–2704Google Scholar
  90. 90.
    Dupont J (2004) J Braz Chem Soc 15:341–350Google Scholar
  91. 91.
    Leclercq L, Schmitzer AR (2009) Supramol Chem 21:245–263Google Scholar
  92. 92.
    Steinrueck H-P (2012) Phys Chem Chem Phys 14:5010–5029Google Scholar
  93. 93.
    Kolbeck C, Paape N, Cremer T, Schulz PS, Maier F, Steinrueck H-P, Wasserscheid P (2010) Chem Eur J 16:12083–12087Google Scholar
  94. 94.
    Diebolt O, van Leeuwen PWNM, Kamer PCJ (2012) Acs Catalysis 2:2357–2370Google Scholar
  95. 95.
    Dyson PJ, McIndoe JS, Zhao DB (2003) Chem Commun 508–509Google Scholar
  96. 96.
    Behr A, Wintzer A (2011) Chem Ing Tech 83:1356–1370Google Scholar
  97. 97.
    Wang YH, Jiang JY, Jin ZL (2004) Catal Surv Asia 8:119–126Google Scholar
  98. 98.
    Hugl H, Nobis M (2008) Top Organomet Chem 23:1–17Google Scholar
  99. 99.
    Wasserscheid P, Waffenschmidt H (2002) ACS Symp Ser 818:373–386Google Scholar
  100. 100.
    Kunene TE, Webb PB, Cole-Hamilton DJ (2011) Green Chem 13:1476–1481Google Scholar
  101. 101.
    Buhling A, Kamer PCJ, van Leeuwen PWNM (1995) J Mol Catal A Chem 98:69–80Google Scholar
  102. 102.
    Hanson BE (1999) Coord Chem Rev 185–186:795–807Google Scholar
  103. 103.
    Beller M, Cornils B, Frohning CD, Kohlpaintner CW (1995) J Mol Catal A Chem 104:17–85Google Scholar
  104. 104.
    Riisager A, Eriksen KM, Wasserscheid P, Fehrmann R (2003) Catal Lett 90:149–153Google Scholar
  105. 105.
    Riisager A, Wasserscheid P, van Hal R, Fehrmann R (2003) J Catal 219:452–455Google Scholar
  106. 106.
    Unruh JD, Christenson JR (1982) J Mol Catal 14:19Google Scholar
  107. 107.
    Moser WR, Papite CJ, Brannon DA, Duwell RA (1987) J Mol Catal 41:271Google Scholar
  108. 108.
    Magee MP, Luo W, Hersh WH (2001) Organometallics 21:362–372Google Scholar
  109. 109.
    Erkey C, Palo DR, Haji S (2002) Fuel Chem Div Prepr 47:144Google Scholar
  110. 110.
    Azouri M, Andrieu J, Picquet M, Richard P, Hanquet B, Tkatchenko I (2007) Eur J Inorg Chem 4877–4883Google Scholar
  111. 111.
    Kainz S, Koch D, Leitner W, Baumann W (1997) Angew Chem Int Ed Engl 36:1628–1630Google Scholar
  112. 112.
    Machnitzki P, Tepper M, Wenz K, Stelzer O, Herdtweck E (2000) J Organomet Chem 602:158–169Google Scholar
  113. 113.
    Casey CP, Whiteker GT, Melville MG, Petrovich LM, Gavney JA, Powell DR (1992) J Am Chem Soc 114:5535–5543Google Scholar
  114. 114.
    Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Eur J Inorg Chem 2006:695–706Google Scholar
  115. 115.
    Veige AS (2008) Polyhedron 27:3177–3189Google Scholar
  116. 116.
    Gil W, Boczon K, Trzeciak AM, Ziolkowski JJ, Garcia-Verdugo E, Luis SV, Sans V (2009) J Mol Catal A Chem 309:131–136Google Scholar
  117. 117.
    Gil W, Trzeciak AM (2011) Coord Chem Rev 255:473–483Google Scholar
  118. 118.
    Velazquez HD, Verpoort F (2012) Chem Soc Rev 41:7032–7060Google Scholar
  119. 119.
    Scholten JD, Dupont J (2008) Organometallics 27:4439–4442Google Scholar
  120. 120.
    Herrmann WA, Kohlpaintner CW (1993) Angew Chem Int Ed Eng 32:1524–1544Google Scholar
  121. 121.
    Ding H, Hanson BE (1994) J Chem Soc Chem Commun 2747Google Scholar
  122. 122.
    Sieffert N, Wipff G (2007) J Phys Chem B 111:4951–4962Google Scholar
  123. 123.
    Leitner W (2002) Acc Chem Res 35:746–756Google Scholar
  124. 124.
    Leitner W (2003) Chem Unserer Zeit 37:32–38Google Scholar
  125. 125.
    Osuna AB, Serbanovic A, Nunes da Ponte M, Matsubara H, Ryu I, Dupont J (2006) Fluid Extraction. In: Afonso CAM, Crespo JG (eds) Green separation processes: fundamentals and applications. Weinheim, Wiley, pp 207–218Google Scholar
  126. 126.
    Niessen HG, Woelk K (2007) Top Curr Chem 276:69–110Google Scholar
  127. 127.
    Pitter S, Dinjus E, Ionescu C, Maniut C, Makarczyk P, Patcas F (2008) Top Organomet Chem 23:109–147Google Scholar
  128. 128.
    Rathke JW, Klingler RJ, Krause TR (1991) Organometallics 10:1350–1355Google Scholar
  129. 129.
    Sellin MF, Cole-Hamilton DJ (2000) J Chem Soc Dalton 1681–1683Google Scholar
  130. 130.
    Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Nature 399:28–29Google Scholar
  131. 131.
    Scurto AM, Aki SNVK, Brennecke JF (2002) J Am Chem Soc 124:10276–10277Google Scholar
  132. 132.
    Mellein BR, Brennecke JF (2007) J Phys Chem B 111:4837–4843Google Scholar
  133. 133.
    Ren W, Sensenich B, Scurto AM (2010) J Chem Thermodyn 42:305–311Google Scholar
  134. 134.
    Blanchard LA, Gu Z, Brennecke JF (2001) J Phys Chem B 105:2437–2444Google Scholar
  135. 135.
    Anthony JL, Maginn EJ, Brennecke JF (2002) J Phys Chem B 106:7315–7320Google Scholar
  136. 136.
    Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) J Am Chem Soc 126:5300–5308Google Scholar
  137. 137.
    Scurto AM, Hutchenson K, Subramaniam B (2009) Gas-expanded liquids: fundamentals and applications. In: Scurto AM, Hutchenson K, Subramaniam B (eds) Gas-expanded liquids and near-critical media: green chemistry and engineering. American Chemical Society, Washington, DC, pp 3–37Google Scholar
  138. 138.
    Webb PB, Sellin MF, Kunene TE, Williamson S, Slawin AMZ, Cole-Hamilton DJ (2003) J Am Chem Soc 125:15577–15588Google Scholar
  139. 139.
    Sellin MF, Webb PB, Cole-Hamilton DJ (2001) Chem Commun 781–782Google Scholar
  140. 140.
    Ahosseini A, Ren W, Scurto AM (2009) Ind Eng Chem Res 48:4254–4265Google Scholar
  141. 141.
    Cole-Hamilton DJ (2003) Science 299:1702–1706Google Scholar
  142. 142.
    Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Top Catal 40:91–102Google Scholar
  143. 143.
    Li H, Bhadury PS, Song B, Yang S (2012) RSC Adv 2:12525–12551Google Scholar
  144. 144.
    Tundo P, Perosa A (2007) Chem Soc Rev 36:532–550Google Scholar
  145. 145.
    Hagiwara H (2012) Heterocycles 85:281–297Google Scholar
  146. 146.
    Van Doorslaer C, Wahlen J, Mertens P, Binnemans K, De Vos D (2010) Dalton Trans 39:8377–8390Google Scholar
  147. 147.
    Mehnert CP, Cook RA, Dispenziere NC, Afeworki M (2002) J Am Chem Soc 124:12932–12933Google Scholar
  148. 148.
    Haumann M, Dentler K, Joni J, Riisager A, Wasserscheid P (2007) Adv Synth Catal 349:425–431Google Scholar
  149. 149.
    Yang Y, Lin HQ, Deng CX, She JR, Yuan YZ (2005) Chem Lett 34:220–221Google Scholar
  150. 150.
    Yang Y, Deng CX, Yuan YZ (2005) J Catal 232:108–116Google Scholar
  151. 151.
    Hintermair U, Gong Z, Serbanovic A, Muldoon MJ, Santini CC, Cole-Hamilton DJ (2010) Dalton Trans 39:8501–8510Google Scholar
  152. 152.
    Hamza K, Blum J (2007) Eur J Org Chem 4706–4710Google Scholar
  153. 153.
    Panda AG, Jagtap SR, Nandurkar NS, Bhanage BM (2008) Ind Eng Chem Res 47:969–972Google Scholar
  154. 154.
    Mehnert CP (2004) Chem Eur J 11:50–56Google Scholar
  155. 155.
    Vangeli OC, Romanos GE, Beltsios KG, Fokas D, Kouvelos EP, Stefanopoulos KL, Kanellopoulos NK (2010) J Phys Chem B 114:6480–6491Google Scholar
  156. 156.
    Lemus J, Palomar J, Gilarranz MA, Rodriguez JJ (2011) Adsorption 17:561–571Google Scholar
  157. 157.
    Werner S, Szesni N, Kaiser M, Haumann M, Wasserscheid P (2012) Chem Eng Technol 35:1962–1967Google Scholar
  158. 158.
    Riisager A, Fehrmann R, Flicker S, van Hal R, Haumann M, Wasserscheid P (2005) Angew Chem Int Edit 44:815–819Google Scholar
  159. 159.
    Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Eur J Inorg Chem 695–706Google Scholar
  160. 160.
    Shylesh S, Hanna D, Werner S, Bell AT (2012) ACS Catal 2:487–493Google Scholar
  161. 161.
    Riisager A, Fehrmann R, Haumann M, Gorle BSK, Wasserscheid P (2005) Ind Eng Chem Res 44:9853–9859Google Scholar
  162. 162.
    Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2008) Catalytic SILP Materials. In: Leitner W, Hölscher M (eds) Regulated systems for multiphase catalysis. Springer, Berlin Heidelberg, pp 149–161Google Scholar
  163. 163.
    Hanna DG, Shylesh S, Werner S, Bell AT (2012) J Catal 292:166–172Google Scholar
  164. 164.
    Haumann M, Jakuttis M, Werner S, Wasserscheid P (2009) J Catal 263:321–327Google Scholar
  165. 165.
    Jakuttis M, Schoenweiz A, Werner S, Franke R, Wiese K-D, Haumann M, Wasserscheid P (2011) Angew Chem Int Edit 50:4492–4495Google Scholar
  166. 166.
    Haumann M, Jakuttis M, Franke R, Schoenweiz A, Wasserscheid P (2011) Chemcatchem 3:1822–1827Google Scholar
  167. 167.
    Franke R, Brausch N, Fridag D, Christiansen A, Becker M, Wasserscheid P, Haumann M, Jakuttis M, Werner S, Schoenweiz A (2012) DE102010041821-A1; WO2012041846-A1Google Scholar
  168. 168.
    Ha HNT, Duc DT, Dao TV, Le MT, Riisager A, Fehrmann R (2012) Catal Commun 25:136–141Google Scholar
  169. 169.
    Clarke ML (2005) Curr Org Chem 9:701–718Google Scholar
  170. 170.
    Nairoukh Z, Blum J (2012) J Mol Catal A Chem 358:129–133Google Scholar
  171. 171.
    Migowski P, Dupont J (2007) Chem Eur J 13:32–39Google Scholar
  172. 172.
    Yuan Y, Yan N, Dyson PJ (2012) ACS Catal 2:1057–1069Google Scholar
  173. 173.
    Han D, Li X, Zhang H, Liu Z, Li J, Li C (2006) J Catal 243:318–328Google Scholar
  174. 174.
    Han D, Li X, Zhang H, Liu Z, Hu G, Li C (2008) J Mol Catal A Chem 283:15–22Google Scholar
  175. 175.
    Axet MR, Castillón S, Claver C, Philippot K, Lecante P, Chaudret B (2008) Eur J Inorg Chem 2008:3460–3466Google Scholar
  176. 176.
    Bruss AJ, Gelesky MA, Machado G, Dupont J (2006) J Mol Catal A Chem 252:212–218Google Scholar
  177. 177.
    Pospech J, Fleischer I, Franke R, Buchholz S, Beller M (2013) Angew Chem Int Ed 52:2852–2872Google Scholar
  178. 178.
    Currie M, Estager J, Licence P, Men S, Nockemann P, Seddon KR, Swadźba-Kwaśny M, Terrade C (2012) Inorg Chem 52:1710–1721Google Scholar
  179. 179.
    Petocz G, Rangits G, Shaw M, de Bod H, Williams DBG, Kollar L (2009) J Organomet Chem 694:219–222Google Scholar
  180. 180.
    Rangits G, Petocz G, Berente Z, Kollar L (2003) Inorg Chim Acta 353:301–305Google Scholar
  181. 181.
    Rangits G, Berente Z, Kegl T, Kollar L (2005) J Coord Chem 58:869–874Google Scholar
  182. 182.
    Illner P, Zahl A, Puchta R, van Eikema HN, Wasserscheid P, van Eldik R (2005) J Organomet Chem 690:3567–3576Google Scholar
  183. 183.
    Tominaga K-I, Sasaki Y (2000) Catal Commun 1:1–3Google Scholar
  184. 184.
    Tominaga K-I, Sasaki Y, Hagihara K, Watanabe T, Saito M (1994) Chem Lett 23:1391–1394Google Scholar
  185. 185.
    Tominaga K (2006) Catal Today 115:70–72Google Scholar
  186. 186.
    Srivastava VK, Eilbracht P (2009) Catal Commun 10:1791–1795Google Scholar
  187. 187.
    Mura MG, Luca LD, Giacomelli G, Porcheddu A (2012) Adv Synth Catal 354:3180–3186Google Scholar
  188. 188.
    Peschel A, Hentschel B, Freund H, Sundmacher K (2012) Chem Eng J 188:126–141Google Scholar
  189. 189.
    Peschel A, Hentschel B, Freund H, Sundmacher K (2011) In: 21st European symposium on computer aided process engineering, vol 29. pp 1246–1250Google Scholar
  190. 190.
    Fang J, Jana R, Tunge JA, Subramaniam B (2011) Appl Catal A Gen 393:294–301Google Scholar
  191. 191.
    Mercer SM, Robert T, Dixon DV, Jessop PG (2012) Catal Sci Technol 2:1315–1318Google Scholar
  192. 192.
    Hintermair U, Francio G, Leitner W (2011) Chem Commun 47:3691–3701Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bernhard Rieger
    • 1
  • Andriy Plikhta
    • 1
  • Dante A. Castillo-Molina
    • 1
  1. 1.WACKER-Lehrstuhl für Makromolekulare ChemieTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations