Advertisement

Organometallic Ruthenium Nanoparticles and Catalysis

  • Karine Philippot
  • Pascal Lignier
  • Bruno Chaudret
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 48)

Abstract

Due to a high number of possible applications in various domains, metal nanoparticles are nowadays the subject of an extensive development. This interest in metal nanoparticles is related to their electronic properties at the frontier between those of molecular species and bulk compounds which are induced by their nanometric size. Regarding the field of catalysis, the growing attention for metal nanoparticles also results from the high proportion of surface atoms present in the upper layer of the metallic core which gives rise to numerous potential active sites. Thus, nanocatalysis (which involves the use of catalysts with at least one dimension at the nanoscale) has emerged in the field of modern catalysis as a domain on the borderline between homogeneous and heterogeneous catalysis. Present developments aim at multifunctionality which can be achieved by the proper design of complex nanostructures also named nanohybrids. In nanohybrid the term “hybrid” refers to the appropriate association between a metal core and a stabilizing shell such as a polymer, a ligand, an ionic liquid, or even a support (inorganic materials, carbon black, carbon nanotubes, etc.…). This association can be considered as crucial to tune the surface properties of nanostructures and consequently their catalytic performance. The main expectation for the scientific community is that precisely designed nanoparticles (in terms of size, shape, and composition including surface ligands) should offer the benefits of both homogeneous and heterogeneous catalysts, namely high efficiency and better selectivity.

In that context, we have been developing an efficient and versatile synthesis method using common tools from organometallic chemistry to produce well-controlled nanostructures which have been proved to be of interest for application in catalysis. A high number of studies have been focused on ruthenium nanosystems due to the use of a very convenient organometallic precursor, namely [Ru(COD)(COT)], as the metal source. This Ru complex is easily decomposed under dihydrogen atmosphere at room temperature. In addition, it is a complex of choice to prepare “naked” ruthenium nanostructures since the olefinic ligands present in the coordination sphere of ruthenium are hydrogenated into alkanes which exhibit no interaction with the metal surface. As a consequence, the metallic surface of the obtained nanoparticles is only covered by hydrides and the stabilizer which was deliberately added. This is highly convenient for studying the influence of the stabilizer on the morphology of the nanoparticles as well as their surface chemistry and related catalytic performance.

This chapter gives an overview of our experience in the preparation of ruthenium nanoparticles of controlled size and surface state. Insights are given on the study of their surface chemistry by using simple techniques, mainly IR and NMR, both in solution and in solid state, as well as model hydrogenation reactions. We also discuss the performances of the Ru nanoparticles in catalysis which have been investigated both in solution (in organic or aqueous phases) and after their deposition on a support (alumina, silica, or carbon supports).

Keywords

Catalysis Colloid Ligand Nanocluster Nanohybrid Nanoparticle Nanostructure Organometallic synthesis Ruthenium Surface chemistry 

Notes

Acknowledgments

All our collaborators are greatly acknowledged for their fruitful contributions. We also thank CNRS, University Paul Sabatier at Toulouse University, Institut des Sciences Appliquées at Toulouse (INSA), the Midi-Pyrénées region (including CTP program), ANR (SIDERUS-ANR-08-BLAN-0010-03; SUPRANANO-ANR-09-BLAN-0194), ANR-DFG (MOCA-NANO-ANR-11-INTB-1011 and DFG-911/19-1), INTERREG SUDOE (TRAIN 2 project), EU (ARTIZYMES STREP-FP6-2003-NEST-B3-0151471; SYNFLOW FP7-NMP2-Large program 2010–246461; NANOSONWINGS ERC Advanced Grant-2009-246763), CAPES-COFECUB, CONACyt, ANRT and Sasol for financial supports.

References

  1. 1.
    Schmid G (ed) (1994) Clusters and colloids. From theory to applications. Wiley, WeinheimGoogle Scholar
  2. 2.
    Schmid G (ed) (2004) Nanoparticles. From theory to application. Wiley, WeinheimGoogle Scholar
  3. 3.
    Zhou B, Han S, Raja R, Somorjai G (eds) (2003) Nanotechnology in catalysis. Kluwer Academic/Plenum Publisher, New YorkGoogle Scholar
  4. 4.
    Ulrich H, Uzi L (eds) (2007) Nanocatalysis. Series Nanoscience and Technology. Springer Berlin and HeidelbergGoogle Scholar
  5. 5.
    Roucoux A, Philippot K (2007) In: de Vries JG, Elsevier CJ (eds) Handbook of homogeneous hydrogenations, vol 9. Wiley, Weinheim, pp 217–255Google Scholar
  6. 6.
    Astruc D (ed) (2008) Nanoparticles and catalysis. Wiley-Interscience, New YorkGoogle Scholar
  7. 7.
    Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589–16605Google Scholar
  8. 8.
    Somorjai GA, Aliaga C (2010) Langmuir 26:16190–16203Google Scholar
  9. 9.
    Somorjai GA, Park JY (2009) Surf Sci 603:1293–1300Google Scholar
  10. 10.
    Somorjai GA, Li Y (2010) Top Catal 53:311–325Google Scholar
  11. 11.
    Zhang Y, Grass ME, Kuhn JN, Tao F, Habas SE, Huang W, Yang P, Somorjai GA (2008) J Am Chem Soc 130:5868–5869Google Scholar
  12. 12.
    Cushing BL, Kolescnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893–3946Google Scholar
  13. 13.
    Tao AR, Habas S, Yang P (2008) Small 4:310–325Google Scholar
  14. 14.
    Pradhan SM, Pal T (2010) J Colloid Interface Sci 341(2):333Google Scholar
  15. 15.
    Mourdikoudis S, Liz-Marzán LM (2013) Chem Mater 25:1465Google Scholar
  16. 16.
    Guyonnet Bilé E, Cortelazzo-Polisini E, Denicourt-Nowicki A, Sassine R, Launay F, Roucoux A (2012) ChemSusChem 5:91Google Scholar
  17. 17.
    Grubbs RB (2007) Polym Rev 47(2):2015Google Scholar
  18. 18.
    Yan N, Zhang J, Yuan Y, Chen G-T, Dyson PJ, Li Z, Kou Y (2010) Chem Commun 46:1631Google Scholar
  19. 19.
    Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Chem Sci 2:1632Google Scholar
  20. 20.
    Astruc D (2003) CR Chimie 6:709Google Scholar
  21. 21.
    Astruc D, Diallo AK, Ornelas C (2013) In: Serp P, Philippot K (eds) Nanomaterials and catalysis. Wiley, Weinheim, Chap 3, p 101Google Scholar
  22. 22.
    Dupont J, Scholten JD (2010) Chem Soc Rev 39:1780Google Scholar
  23. 23.
    Scholten JD, Prechtl MG, Dupont J (2012) Handbook of green chemistry, vol 8. Wiley, Weinheim, p 1Google Scholar
  24. 24.
    Nag A, Kovalenko MV, Lee J-S, Liu W, Spokoyny B, Talapin DV (2011) J Am Chem Soc 133:10612–10620Google Scholar
  25. 25.
    Philippot K, Chaudret B (2003) CR Chim 6:1019–1034Google Scholar
  26. 26.
    Baumer M, Libuda J, Neyman KM, Rosch N, Rupprechterz G, Freund H-J (2007) Phys Chem Chem Phys 9:3541–3558Google Scholar
  27. 27.
    Corma A, García H (2008) Chem Soc Rev 37:2096–2126Google Scholar
  28. 28.
    Risse T, Shaikhutdinov S, Nilius N, Sterrer M, Freund H-J (2008) Acc Chem Res 41:949–956Google Scholar
  29. 29.
    Freund H-J (2010) Chem Eur J 16:9384–9397Google Scholar
  30. 30.
    Nilius N, Risse T, Schauermann S, Shaikhutdinov S, Sterrer M, Freund H-J (2011) Top Catal 54:4–12Google Scholar
  31. 31.
    Primo A, Corma A, García H (2011) Phys Chem Chem Phys 13:886–910Google Scholar
  32. 32.
    Serna P, Boronat M, Corma A (2011) Top Catal 54:439–446Google Scholar
  33. 33.
    Boronat M, Corma A (2011) J Catal 284:138–147Google Scholar
  34. 34.
    López C, Corma A (2012) ChemCatChem 4:751–752Google Scholar
  35. 35.
    Chaudret B, Commenges G, Poilblanc R (1982) J Chem Soc Chem Commun 1388–1390Google Scholar
  36. 36.
    Cormary B, Dumestre F, Liakakos N, Soulantica K, Chaudret B (2013) Dalton Trans 42:12546–12553Google Scholar
  37. 37.
    Amiens C, Chaudret B, Ciuculescu-Pradines D, Colliére V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K (2013) New J Chem 37:3374–3401Google Scholar
  38. 38.
    Gregson D, Howard JAK, Murray M, Spencer JL (1981) J Chem Soc Chem Commun 716Google Scholar
  39. 39.
    Frost PW, Howard JAK, Spencer JL, Turner DG (1981) J Chem Soc Chem Commun 1104Google Scholar
  40. 40.
    Chaudret B, Cole-Hamilton DJ, Wilkinson G (1978) J Chem Soc Dalton Trans 1739Google Scholar
  41. 41.
    Philippot K, Chaudret B (2003) C R Acad Sci 6:1019Google Scholar
  42. 42.
    Vranka RG, Dahl LF, Chini P, Chatt J (1969) J Am Chem Soc 91:1574–1576Google Scholar
  43. 43.
    Fumagalli A, Martinengo S, Chini P, Albinati A, Bruckner S, Heaton BT (1978) J Chem Soc Chem Comm 195–196Google Scholar
  44. 44.
    Washecheck DM, Wucherer EJ, Dahl Lawrence F, Ceriotti A, Longoni G, Manassero Mario M, Sansoni M, Chini P (1979) J Am Chem Soc 101:6110–6112Google Scholar
  45. 45.
    Scott SL, Susannah, Basset JM (1994) J Mol Catal 86:5–22Google Scholar
  46. 46.
    Schmid G, Boese R, Pfeil R, Bandermann F, Meyer S, Calis GHM, van der Velden JWA (1981) Chem Ber 114:3634Google Scholar
  47. 47.
    Wallenberg LR, Bovin JO, Schmid G (1985) Surf Sci 156:256–264Google Scholar
  48. 48.
    Van Staveren MPJ, Brom HB, De Jongh LJ, Schmid G (1986) Solid State Comm 60:319–322Google Scholar
  49. 49.
    Benfield RE, Creighton JA, Eadon DG, Schmid G (1989) Zeitschrift fuer Physik D Atoms Mol Clusters 12:533–536Google Scholar
  50. 50.
    Schmid G (1990) Inorg Synth 7:214–218Google Scholar
  51. 51.
    Bradley JS, Hill EH, Leonowicz ME, Wirzke H (1987) J Mol Catal 41:59–74Google Scholar
  52. 52.
    Philippot K, Chaudret B (2007) Comprehensive organometallic chemistry III. In: Crabtree RH, Mingos MP (Eds-in-Chief) Volume 12 – Applications III: functional materials, environmental and biological applications, Dermot O’Hare (Volume Ed.), Chapter 12–03, Elsevier, Oxford, pp 71–99Google Scholar
  53. 53.
    Mehdaoui B, Carrey J, Stadler M, Cornejo A, Nayral C, Delpech F, Chaudret B, Respaud M (2012) App Phys Lett 100:052403/1Google Scholar
  54. 54.
    Barriere C, Piettre K, Latour V, Margeat O, Turrin C-O, Chaudret B, Fau P (2012) J Mater Chem 22:2279Google Scholar
  55. 55.
    Meffre A, Lachaize S, Gatel C, Respaud M, Chaudret B (2011) J Mater Chem 21:13464Google Scholar
  56. 56.
    Dumestre F, Chaudret B, Amiens C, Fromen M-C, Casanove M-J, Renaud P, Zurcher P (2002) Angew Chem Int Ed 41(22):4286Google Scholar
  57. 57.
    Wetz F, Soulantica K, Respaud M, Falqui A, Chaudret B (2007) Mater Sci Eng C 27:1162Google Scholar
  58. 58.
    Schmid G (2010) In: In: Schmid G (ed) Nanoparticles from theory to applications. Second completely revised and updated edition. Wiley, Weinheim, p 217Google Scholar
  59. 59.
    Bradley JS, Millar JM, Hill EW, Behal S, Chaudret B, Duteil A (1991) Faraday Discuss 92:255–268Google Scholar
  60. 60.
    Duteil A, Quéau R, Chaudret B, Mazel R, Roucau C, Bradley JS (1993) Chem Mater 5:341–347Google Scholar
  61. 61.
    Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove M-J (2001) J Am Chem Soc 123:7584–7593Google Scholar
  62. 62.
    Novio F, Philippot K, Chaudret B (2010) Catal Lett 140:1–7Google Scholar
  63. 63.
    Pieters G, Taglang C, Bonnefille E, Gutmann T, Puente C, Berthet J-C, Dugave C, Chaudret B, Rousseau B (2014) Angew Chem Int Ed 53:230–234Google Scholar
  64. 64.
    Vidoni O, Philippot K, Amiens C, Chaudret B, Balmes O, Malm J-O, Bovin J-O, Senocq F, Casanove M-J (1999) Angew Chem Int Ed 38:3736–3738Google Scholar
  65. 65.
    Pelzer K, Vidoni O, Philippot K, Chaudret B, Collière V (2003) Adv Funct Mater 13:118–126Google Scholar
  66. 66.
    Pelzer K, Philippot K, Chaudret B (2003) Z Phys Chem 217:1–9Google Scholar
  67. 67.
    Lara P, Philippot K, Chaudret B (2013) ChemCatChem 5:28–45Google Scholar
  68. 68.
    Sun S, Fullerton EE, Weller D, Murray CB (2001) IEEE Trans Magn 37:1239–1243Google Scholar
  69. 69.
    Metin O, Mazumder V, Ozkar S, Sun S (2010) J Am Chem Soc 132:1468–1469Google Scholar
  70. 70.
    Liu Y, Wang C, Wei Y, Zhu L, Li D, Jiang JS, Markovic NM, Stamenkovic VR, Sun S (2011) Nano Lett 11:1614–1617Google Scholar
  71. 71.
    Watt J, Yu C, Chang SLY, Cheong S, Tilley RD (2013) J Am Chem Soc 135:606–609Google Scholar
  72. 72.
    Lignier P, Bellabarba R, Tooze RP, Su Z, Landon P, Ménard H, Zhou W (2012) Cryst Growth Des 12:939–942Google Scholar
  73. 73.
    Ramirez E, Jansat S, Philippot K, Lecante P, Gomez M, Masdeu-Bulto AM, Chaudret B (2004) J Organomet Chem 689:4601–4610Google Scholar
  74. 74.
    García-Antón J, Axet MR, Jansat S, Philippot K, Chaudret B, Pery T, Buntkowsky G, Limbach HH (2008) Angew Chem Int Ed 47:2074–2078Google Scholar
  75. 75.
    Novio F, Monahan D, Coppel Y, Antorrena G, Lecante P, Philippot K, Chaudret B (2014) Chem Eur J 20:1287–1297Google Scholar
  76. 76.
    Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gomez M (2008) Chem Commun 3296–3298Google Scholar
  77. 77.
    Jansat S, Gomez M, Philippot K, Muller G, Guiu E, Claver C, Castillon S, Chaudret B (2004) J Am Chem Soc 126:1592–1593Google Scholar
  78. 78.
    Favier I, Gomez M, Muller G, Axet MR, Castillon S, Claver C, Jansat S, Chaudret B, Philippot K (2007) Adv Synth Catal 349:2459–2469Google Scholar
  79. 79.
    Weitz DA, Huang JS, Lin MY, Sung J (1985) Phys Rev Lett 54:1416Google Scholar
  80. 80.
    Favier I, Lavedan P, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M (2013) Top Catal 56:1253–1261Google Scholar
  81. 81.
    Vignolle J, Tilley TD (2009) Chem Commun 7230–7232Google Scholar
  82. 82.
    Lara P, Rivada-Wheelaghan O, Conejero S, Poteau R, Philippot K, Chaudret B (2011) Angew Chem Int Ed 50:12080–12084Google Scholar
  83. 83.
    Gonzalez-Galvez D, Lara P, Rivada-Wheelaghan O, Conejero S, Chaudret B, Philippot K, van Leeuwen PWNM (2013) Catal Sci Technol 3:99–105Google Scholar
  84. 84.
    Wang D, Li Y (2011) Adv Mater 23:1044Google Scholar
  85. 85.
    Zeng H, Sun S (2008) Adv Funct Mater 18:391Google Scholar
  86. 86.
    Jun Y-W, Choi J-S, Cheon J (2007) Chem Commun 12:1203Google Scholar
  87. 87.
    Cozzoli PD, Pellegrino T, Manna L (2006) Chem Soc Rev 35:1195Google Scholar
  88. 88.
    Bradley JS, Hill EW, Chaudret B, Duteil A (1995) Langmuir 11:693Google Scholar
  89. 89.
    Pan C, Dassenoy F, Casanove M-J, Philippot K, Amiens C, Lecante P, Mosset A, Chaudret B (1999) J Phys Chem B 103:10098Google Scholar
  90. 90.
    Dassenoy F, Casanove M-J, Lecante P, Pan C, Philippot K, Amiens C, Chaudret B (2001) Phys Rev B 63:235407Google Scholar
  91. 91.
    Lara P, Casanove M-J, Lecante P, Fazzini P-F, Philippot K, Chaudret B (2012) J Mater Chem 22:3578Google Scholar
  92. 92.
    Lara P, Ayvali T, Casanove M-J, Lecante P, Fazzini P-F, Philippot K, Chaudret B (2013) Dalton Trans 42:372Google Scholar
  93. 93.
    Kelsen V, Meffre A, Fazzini P-F, Lecante P, Chaudret B (2014) ChemCatChem. doi:10.1002/cctc.201300907Google Scholar
  94. 94.
    Bonnefille E, Novio F, Gutmann T, Poteau R, Lecante P, Jumas J-C, Philippot K, Chaudret B (2014) Nanoscale. doi:10.1039/C4NR00791CGoogle Scholar
  95. 95.
    Baddeley CJ, Jones TE, Trant AG, Wilson K (2011) Top Catal 54:1348–1356Google Scholar
  96. 96.
    Jansat S, Picurelli D, Pelzer L, Philippot K, Gomez M, Muller G, Lecante P, Chaudret B (2006) New J Chem 30:115–122Google Scholar
  97. 97.
    Gual A, Axet MR, Philippot K, Chaudret B, Denicourt-Nowicki A, Roucoux A, Castillón S, Claver C (2008) Chem Commun 2759–2761Google Scholar
  98. 98.
    Gonzalez-Galvez D, Nolis P, Philippot K, Chaudret B, van Leeuwen PWNM (2012) ACS Catal 2:317–321Google Scholar
  99. 99.
    Ackermann L (2006) Synthesis 1557–1571Google Scholar
  100. 100.
    Ackermann L, Born R, Spatz JH, Althammer A, Gschrei CJ (2006) Pure Appl Chem 78:209–214Google Scholar
  101. 101.
    Wolpers A, Ackermann L, Vana P (2010) Macromol Chem Phys 212:259–265Google Scholar
  102. 102.
    Rafter E, Gutmann T, Löw F, Buntkowsky G, Philippot K, Chaudret B, van Leeuwen PWNM (2013) Catal Sci Technol 3:595–599Google Scholar
  103. 103.
    Stephens FH, Pons V, Baker RT (2007) Dalton Trans 25:2613–2626Google Scholar
  104. 104.
    Zahmakıran M, Philippot K, Özkar S, Chaudret B (2012) Dalton Trans 41:590–598Google Scholar
  105. 105.
    Zahmakiran M, Tristany M, Philippot K, Fajerwerg K, Özkar S, Chaudret B (2010) Chem Commun 46:2938–29540Google Scholar
  106. 106.
    Debouttière PJ, Martinez V, Philippot K, Chaudret B (2009) Dalton Trans 10172–10174Google Scholar
  107. 107.
    Debouttière PJ, Coppel Y, Denicourt-Nowicki A, Roucoux A, Chaudret B, Philippot K (2012) Eur J Inorg Chem 1229–1236Google Scholar
  108. 108.
    Gutmann T, Bonnefille E, Breitzke H, Debouttière P-J, Philippot K, Poteau R, Buntkowsky G, Chaudret B (2013) PCCP 15:17383–17394Google Scholar
  109. 109.
    Guerrero M, Roucoux A, Denicourt-Nowicki A, Bricout H, Monflier E, Collière V, Fajerwerg K, Philippot K (2012) Catal Today 183:34–41Google Scholar
  110. 110.
    Guerrero M, Coppel Y, Chau NTT, Roucoux A, Denicourt-Nowicki A, Monflier E, Bricout H, Lecante P, Philippot K (2013) ChemCatChem 12:3802–3811Google Scholar
  111. 111.
    Yan N, Xiao C, Kou Y (2010) Coord Chem Rev 254:1179–1218Google Scholar
  112. 112.
    Hallett JP, Welton T (2011) Chem Rev 111:3508–3576Google Scholar
  113. 113.
    Pârvulescu VI, Hardacre C (2007) Chem Rev 107:2615–2665Google Scholar
  114. 114.
    Pádua AAH, Costa Gomes MC, Canongia Lopes JNA (2007) Acc Chem Res 40:1087–1096Google Scholar
  115. 115.
    Pensado AS, Pádua AAH (2011) Angew Chem Int Ed 50:8683–8687Google Scholar
  116. 116.
    Prechtl MHG, Scariot M, Scholten JD, Machado G, Teixeira SR, Dupont J (2008) Inorg Chem 47:8995–9001Google Scholar
  117. 117.
    Prechtl MHG, Scholten JD, Dupont J (2009) J Mol Chem 313:74–78Google Scholar
  118. 118.
    Scholten JD, Leal BC, Dupont J (2012) ACS Catal 2:184–200Google Scholar
  119. 119.
    Raluy E, Favier I, Lopez-Vinasco AM, Pradel C, Martin E, Madec D, Teuma E, Gomez M (2011) Phys Chem Chem Phys 13:13579–13584Google Scholar
  120. 120.
    Rodriguez-Perez L, Pradel C, Serp P, Gomez M, Teuma E (2011) ChemCatChem 3:749–754Google Scholar
  121. 121.
    Gutel T, Garcia-Anton J, Pelzer K, Philippot K, Santini CC, Chauvin Y, Chaudret B, Basset JM (2007) J Mater Chem 17:3290–3292Google Scholar
  122. 122.
    Gutel T, Santini CC, Philippot K, Padua A, Pelzer K, Chaudret B, Chauvin Y, Basset J-M (2009) J Mat Chem 19:3624–3631Google Scholar
  123. 123.
    Campbell PS, Santini CC, Bouchu D, Fenet B, Philippot K, Chaudret B, Padua AAH, Chauvin Y (2010) Phys Chem Chem Phys 12:4217–4223Google Scholar
  124. 124.
    Salas G, Santini CC, Philippot K, Colliere V, Chaudret B, Fenet B, Fazzini PF (2011) Dalton Trans 40:4660–4668Google Scholar
  125. 125.
    Salas G, Podgorsek A, Campbell PS, Santini CC, Padua AAH, Gomes MFC, Philippot K, Chaudret B, Turmine M (2011) Phys Chem Chem Phys 13:13527–13536Google Scholar
  126. 126.
    Salas G, Campbell PS, Santini CC, Philippot K, Costa Gomes MF, Padua AAH (2012) Dalton Trans 41:13919–13926Google Scholar
  127. 127.
    Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, LondonGoogle Scholar
  128. 128.
    Pelzer K, Philippot K, Chaudret B, Meyer-Zaika W, Schmid GZ (2003) Anorg Allg Chem 629:1217–1222Google Scholar
  129. 129.
    Kormann H-P, Schmid G, Pelzer K, Philippot K, Chaudret B (2004) Z Anorg Allg Chem 630:1913–1918Google Scholar
  130. 130.
    Jansat S, Pelzer K, García-Antón J, Raucoules R, Philippot K, Maisonnat A, Chaudret B, Guari Y, Medhi A, Reyé C, Corriu RJP (2007) Adv Funct Mater 17:3339–3347Google Scholar
  131. 131.
    Matsura V, Guari Y, Reyé C, Corriu RJP, Tristany M, Jansat S, Philippot K, Maisonnat A, Chaudret B (2009) Adv Funct Mater 19:3781–3787Google Scholar
  132. 132.
    Tristany M, Philippot K, Guari Y, Collière V, Lecante P, Chaudret B (2010) J Mater Chem 20:9523–9530Google Scholar
  133. 133.
    Castillejos E, Debouttière P-J, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P (2009) Angew Chem Int Ed 48:2529–2533Google Scholar
  134. 134.
    García-Suárez EJ, Tristany M, García AB, Collière V, Philippot K (2012) Micropor Mesopor Mater 153:155–162Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Karine Philippot
    • 1
    • 2
  • Pascal Lignier
    • 1
    • 2
  • Bruno Chaudret
    • 3
  1. 1.Laboratoire de Chimie de Coordination, CNRS, LCCToulouseFrance
  2. 2.Université de Toulouse, UPS, INPT, LCCToulouseFrance
  3. 3.Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), UMR5215 INSA-CNRS-UPS, Institut des Sciences appliquéesToulouseFrance

Personalised recommendations