Alkyne and Alkene Insertion into Metal–Heteroatom and Metal–Hydrogen Bonds: The Key Stages of Hydrofunctionalization Process

Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 43)

Abstract

In this chapter we review mechanistic concepts of carbon–heteroatom bond formation involving hydrofunctionalization of double and triple carbon–carbon bonds via migratory insertion pathway. A variety of useful synthetic procedures were developed within the scope of hydrofunctionalization reaction involving transition metal catalysts to change the direction of the addition reaction and to improve the selectivity of the process. Outstanding potential of multiple bonds activation and insertion in the metal complexes is far from being fully explored. The key factors determining insertion pathways into metal–heteroatom vs. metal–hydrogen bonds and the influence on regioselectivity of the insertion remain to be revealed in nearest future.

Keywords

Alkenes Alkynes Catalysis Insertion Mechanism Selectivity 

References

  1. 1.
    Seechurn CCCJ, Kitching MO, Colacot TJ, Snieckus V (2012) Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel prize. Angew Chem Int Ed 51(21):5062–5085CrossRefGoogle Scholar
  2. 2.
    Beccalli EM, Broggini G, Martinelli M, Sottocornola S (2007) C–C, C–O, C–N bond formation on sp2 carbon by Pd(II)-catalyzed reactions involving oxidant agents. Chem Rev 107(11):5318–5365CrossRefGoogle Scholar
  3. 3.
    Muci A, Buchwald S (2002) Practical palladium catalysts for C–N and C–O bond formation. In: Miyaura N (ed) Cross-coupling reactions. Springer, Heidelberg, pp 131–209CrossRefGoogle Scholar
  4. 4.
    Hartwig JF (2008) Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc Chem Res 41(11):1534–1544CrossRefGoogle Scholar
  5. 5.
    Monnier F, Taillefer M (2009) Catalytic C–C, C–N, and C–O ullmann-type coupling reactions. Angew Chem Int Ed 48(38):6954–6971CrossRefGoogle Scholar
  6. 6.
    Glueck D (2010) Recent advances in metal-catalyzed C–P bond formation. In: Vigalok A (ed) C–X bond formation. Springer, Heidelberg, pp 65–100CrossRefGoogle Scholar
  7. 7.
    Bichler P, Love J (2010) Organometallic approaches to carbon–sulfur bond formation. In: Vigalok A (ed) C–X bond formation. Springer, Heidelberg, pp 39–64CrossRefGoogle Scholar
  8. 8.
    Beletskaya IP, Ananikov VP (2011) Transition-metal-catalyzed C–S, C–Se, and C–Te bond formation via cross-coupling and atom-economic addition reactions. Chem Rev 111(3):1596–1636CrossRefGoogle Scholar
  9. 9.
    Bruneau C, Dixneuf PH (2006) Metal vinylidenes and allenylidenes in catalysis: applications in anti-markovnikov additions to terminal alkynes and alkene metathesis. Angew Chem Int Ed 45(14):2176–2203CrossRefGoogle Scholar
  10. 10.
    Ogawa A (2000) Activation and reactivity of group 16 inter-element linkage - transition-metal-catalyzed reactions of thiols and selenols. J Organomet Chem 611(1–2):463–474CrossRefGoogle Scholar
  11. 11.
    Pohlki F, Doye S (2003) The catalytic hydroamination of alkynes. Chem Soc Rev 32(2):104–114CrossRefGoogle Scholar
  12. 12.
    Beletskaya I, Moberg C (2006) Element–element additions to unsaturated carbon–carbon bonds catalyzed by transition metal complexes. Chem Rev 106(6):2320–2354CrossRefGoogle Scholar
  13. 13.
    Alonso F, Beletskaya IP, Yus M (2004) Transition-metal-catalyzed addition of heteroatom–hydrogen bonds to alkynes. Chem Rev 104(6):3079–3160CrossRefGoogle Scholar
  14. 14.
    Hartwig J (2009) Organotransition metal chemistry: from bonding to catalysis, 1st edn. University Science books, Mill ValleyGoogle Scholar
  15. 15.
    Crabtree RH (2009) The organometallic chemistry of the transition metals, 5th edn. Wiley, New YorkGoogle Scholar
  16. 16.
    Collman JP, Hegedus LS, Norton JR, Finke RG (1987) Principles and applications of organotransition metal chemistry. University Science Books, Mill ValleyGoogle Scholar
  17. 17.
    Ananikov V, Kashin A, Hazipov O, Beletskaya I, Starikova Z (2011) Highly selective catalytic synthesis of (E,E)-1,4-diiodobuta-1,3-diene via atom-efficient addition of acetylene and iodine: a versatile (E,E)-1,3-diene building block in cross-coupling reactions. Synlett (14):2021–2024Google Scholar
  18. 18.
    Ananikov VP, Musaev DG, Morokuma K (2001) Catalytic triple bond activation and vinyl–vinyl reductive coupling by Pt(IV) complexes. A density functional study. Organometallics 20(8):1652–1667CrossRefGoogle Scholar
  19. 19.
    Gerber R, Frech CM (2012) Alkyne hydrothiolation catalyzed by a dichlorobis(aminophosphine) complex of palladium: selective formation of cis-configured vinyl thioethers. Chem Eur J 18(29):8901–8905Google Scholar
  20. 20.
    Nishina N, Yamamoto Y (2012) Late transition metal-catalyzed hydroamination. Top Organomet Chem. doi:10.1007/3418_2012_31
  21. 21.
    Reznichenko A, Hultzsch K (2012) Early transition metal (group 3–5, lanthanides and actinides) and main group metal (group 1, 2, and 13) catalyzed hydroamination. Top Organomet Chem. doi:10.1007/3418_2011_22
  22. 22.
    Tanaka M (2012) Recent progress in transition metal-catalyzed addition reactions of H–P(O) compounds with unsaturated carbon linkages. Top Organomet Chem. doi:10.1007/3418_2011_20
  23. 23.
    Pullarkat S, Leung P-H (2012) Chiral metal complex-promoted asymmetric hydrophosphinations. Top Organomet. Chem Eur J 18(29):8901–8905Google Scholar
  24. 24.
    Bruneau C (2012) Group 8 metals-catalyzed O–H bond addition to unsaturated molecules. Top Organomet Chem. doi:10.1007/3418_2011_17
  25. 25.
    Abbiati G, Beccalli E, Rossi E (2012) Groups 9 and 10 metals-catalyzed O–H bond addition to unsaturated molecules. Top Organomet Chem. doi:10.1007/3418_2011_18
  26. 26.
    Huguet N, Echavarren A (2012) Gold-catalyzed O–H bond addition to unsaturated organic molecules. Top Organomet Chem. doi:10.1007/3418_2011_21
  27. 27.
    Ishii A, Nakata N (2012) The mechanism for transition-metal-catalyzed hydrochalcogenation of unsaturated organic molecules. Top Organomet Chem. doi:10.1007/3418_2011_16
  28. 28.
    Ogawa A (2012) Transition-metal-catalyzed S–H and Se–H bonds addition to unsaturated molecules. Top Organomet Chem. doi:10.1007/3418_2011_19
  29. 29.
    McDonald RI, Liu G, Stahl SS (2011) Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem Rev 111(4):2981–3019CrossRefGoogle Scholar
  30. 30.
    Averkiev BB, Zhao Y, Truhlar DG (2010) Binding energy of d10 transition metals to alkenes by wave function theory and density functional theory. J Mol Cat A: Chem 324(1–2):80–88CrossRefGoogle Scholar
  31. 31.
    Ananikov VP, Musaev DG, Morokuma K (2010) Real size of ligands, reactants and catalysts: Studies of structure, reactivity and selectivity by ONIOM and other hybrid computational approaches. J Mol Catal A Chem 324(1–2):104–119CrossRefGoogle Scholar
  32. 32.
    Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11(46):10757–10816CrossRefGoogle Scholar
  33. 33.
    Bo C, Maseras F (2008) QM/MM methods in inorganic chemistry. Dalton trans (22):2911–2919Google Scholar
  34. 34.
    Ananikov VP, Gayduk KA, Orlov NV, Beletskaya IP, Khrustalev VN, Antipin MY (2010) Two distinct mechanisms of alkyne insertion into the metal–sulfur bond: combined experimental and theoretical study and application in catalysis. Chem Eur J 16(7):2063–2071CrossRefGoogle Scholar
  35. 35.
    Ananikov V, Orlov N, Beletskaya I (2005) Palladium-catalyzed activation of E–E and C–E bonds in diaryl dichalcogenides (E═S, Se) under microwave irradiation conditions. Russ Chem Bull Int Ed 54(3):576–587CrossRefGoogle Scholar
  36. 36.
    Ananikov VP, Orlov NV, Kabeshov MA, Beletskaya IP, Starikova ZA (2008) Stereodefined synthesis of a new type of 1,3-dienes by ligand-controlled carbon–carbon and carbon–heteroatom bond formation in nickel-catalyzed reaction of diaryldichalcogenides with alkynes. Organometallics 27(16):4056–4061CrossRefGoogle Scholar
  37. 37.
    Herberhold M (1972) Metal π-complexes, vol II. Elsevier, AmsterdamGoogle Scholar
  38. 38.
    π-complexes of transition metals (1972) In: topics in current chemistry. Springer, Berlin http://www.springerlink.com/content/978-3-540-05728-4
  39. 39.
    Ananikov VP, Makarov AV, Beletskaya IP (2011) Catalytic hydrofunctionalization of alkynes through P–H bond addition: the unique role of orientation and properties of the phosphorus group in the insertion step. Chem Eur J 17(45):12623–12630CrossRefGoogle Scholar
  40. 40.
    Tye JW, Hartwig JF (2009) Computational studies of the relative rates for migratory insertions of alkenes into square-planar, methyl, -amido, and -hydroxo complexes of rhodium. J Am Chem Soc 131(41):14703–14712CrossRefGoogle Scholar
  41. 41.
    Neukom JD, Perch NS, Wolfe JP (2010) Intramolecular alkene aminopalladation reactions of (dppf)Pd(Ar)[N(Ar1)(CH2)3CH═CH2] complexes. Insertion of unactivated alkenes into Pd–N bonds. J Am Chem Soc 132(18):6276–6277CrossRefGoogle Scholar
  42. 42.
    Hanley PS, Marković D, Hartwig JF (2010) Intermolecular insertion of ethylene and octene into a palladium–amide bond. Spectroscopic evidence for an ethylene amido intermediate. J Am Chem Soc 132(18):6302–6303CrossRefGoogle Scholar
  43. 43.
    Neukom JD, Perch NS, Wolfe JP (2011) Intramolecular insertion of alkenes into Pd−N bonds. Effects of substrate and ligand structure on the reactivity of (P−P)Pd(Ar)[N(Ar1)(CH2)3CR═CHR′] complexes. Organometallics 30(5):1269–1277CrossRefGoogle Scholar
  44. 44.
    Ananikov VP, Musaev DG, Morokuma K (2005) Theoretical insight into the C–C coupling reactions of the vinyl, phenyl, ethynyl, and methyl complexes of palladium and platinum. Organometallics 24(4):715–723CrossRefGoogle Scholar
  45. 45.
    Ananikov VP, Musaev DG, Morokuma K (2007) Critical effect of phosphane ligands on the mechanism of carbon–carbon bond formation involving palladium(II) complexes: a theoretical investigation of reductive elimination from square-planar and T-shaped species. Eur J Inorg Chem (34):5390–5399Google Scholar
  46. 46.
    White PB, Stahl SS (2011) Reversible alkene insertion into the Pd–N bond of Pd(II)-sulfonamidates and implications for catalytic amidation reactions. J Am Chem Soc 133(46):18594–18597CrossRefGoogle Scholar
  47. 47.
    Hanley PS, Hartwig JF (2011) Intermolecular migratory insertion of unactivated olefins into palladium–nitrogen bonds. Steric and electronic effects on the rate of migratory insertion. J Am Chem Soc 133(39):15661–15673CrossRefGoogle Scholar
  48. 48.
    Sugoh K, Kuniyasu H, Kurosawa H (2002) The insertion of dimethyl acetylenedicarboxylate into an S–Pd bond. Chem Lett 31(1):106–107CrossRefGoogle Scholar
  49. 49.
    Kuniyasu H, Kato T, Inoue M, Terao J, Kambe N (2006) The first definitive example of oxidative addition of acyclic vinyl selenide to M(0) complex. J Organomet Chem 691(9):1873–1878CrossRefGoogle Scholar
  50. 50.
    Wang M, Cheng L, Wang J, Wu Z (2011) Mechanism of methylacetylene bisselenation catalyzed by palladium complex from density functional study. J Comput Chem 32(6):1170–1177CrossRefGoogle Scholar
  51. 51.
    Ananikov VP, Orlov NV, Zalesskiy SS, Beletskaya IP, Khrustalev VN, Morokuma K, Musaev DG (2012) Catalytic adaptive recognition of thiol (SH) and selenol (SeH) groups toward synthesis of functionalized vinyl monomers. J Am Chem Soc 134(15):6637–6649CrossRefGoogle Scholar
  52. 52.
    Ananikov VP, Beletskaya IP (2011) Alkyne insertion into the M–P and M–H bonds (M═Pd, Ni, Pt, and Rh): a theoretical mechanistic study of the C–P and C–H bond-formation steps. Chem Asian J 6(6):1423–1430CrossRefGoogle Scholar
  53. 53.
    Ananikov V, Khemchyan L, Beletskaya I (2010) The comparison of addition of molecules possessing P(V)–H bond to alkynes catalyzed with Pd and Ni complexes. Russ J Org Chem 46(9):1269–1276CrossRefGoogle Scholar
  54. 54.
    Di Giuseppe A, Castarlenas R, Pérez-Torrente JJ, Crucianelli M, Polo V, Sancho R, Lahoz FJ, Oro LA (2012) Ligand-controlled regioselectivity in the hydrothiolation of alkynes by rhodium N-heterocyclic carbene catalysts. J Am Chem Soc 134(19):8171–8183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations