Advertisement

Late Transition Metal-Catalyzed Hydroamination

  • Naoko Nishina
  • Yoshinori YamamotoEmail author
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 43)

Abstract

This chapter describes late transition metal complexes-catalyzed hydroamination, the formal addition of an H–N bond across a C–C multiple bond. Late transition metal catalysis has been intensely developed in the hydroamination and additions of various kinds of amines to C–C multiple bonds have been achieved. The reaction pathways strongly depend on the choice of metal complexes, substrates, and reaction conditions. This chapter is organized primarily based on the difference in the mechanisms of hydroamination reactions, and in the scope section concise summary of the hydroamination reaction is shown.

Keywords

Carbon–carbon multiple bonds Hydroamination Late transition metal Mechanism Nitrogen nucleophiles 

Abbreviations

Ar

Aryl

Bu

Butyl

cod

1,5-Cyclooctadiene

Cy

Cyclohexyl

d/D

Deuterium

dba

Dibenzylideneacetone

DPPPent

1,5-Bis(diphenylphosphino)pentane

Et

Ethyl

L

Ligand

M

Metal or molar (mol dm−3)

Me

Methyl

Nu

Nucleophile

P

Phosphorus atom in ligand

Pent

Pentyl

Ph

Phenyl

R

Organic substituent or alkyl

Tf

Trifluoromethanesulfonyl

Tol

Tolyl

Tol-BINAP

2,2′-Bis(di-p-tolylphosphino)-1,1′-binaphthyl

Triphos

Bis(2-diphenylphosphinoethyl)phenylphosphine

Ts

p-Toluenesulfonyl (tosyl)

X

Halide

Xantphos

4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene

Y

Counter anion

References1

  1. 1.
    Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M (2008) Chem Rev 108:3795–3892Google Scholar
  2. 2.
    Widenhoefer RA (2008) Chem Eur J 14:5382–5391Google Scholar
  3. 3.
    Hartwig JF (2008) Nature 455:314–322Google Scholar
  4. 4.
    Li Z, Brouwer C, He C (2008) Chem Rev 108:3239–3265Google Scholar
  5. 5.
    Arcadi A (2008) Chem Rev 108:3266–3325Google Scholar
  6. 6.
    Gorin DJ, Sherry BD, Toste FD (2008) Chem Rev 108:3351–3378Google Scholar
  7. 7.
    Roesky PW (2009) Angew Chem Int Ed 48:4892–4894Google Scholar
  8. 8.
    Chemler SR (2009) Org Biomol Chem 7:3009–3019Google Scholar
  9. 9.
    Dzhemilev UM, Tolstikov GA, Khusnutdinov RI (2009) Russ J Org Chem 45:957–987Google Scholar
  10. 10.
    Zi G (2009) Dalton Trans 2009:9101–9109Google Scholar
  11. 11.
    Taylor JG, Adrio LA, Hii KK(M) (2010) Dalton Trans 39:1171–1175Google Scholar
  12. 12.
    Yadav JS, Antony A, Rao TS, Reddy BVS (2011) J Organomet Chem 696:16–36Google Scholar
  13. 13.
    Benson SW (1976) In: Thermochemical kinetics: methods for the estimation of thermochemical data and rate parameters, 2nd edn. Wiley, New YorkGoogle Scholar
  14. 14.
    Steinborn D, Taube R (1986) Z Chem 26:349–359Google Scholar
  15. 15.
    Roundhill DM (1992) Chem Rev 92:1–27Google Scholar
  16. 16.
    Pedley JB (1994) In: Thermochemical data and structures of organic compounds volume I, TRC Data series, Thermodynamics Research Center, CRC Press, TexasGoogle Scholar
  17. 17.
    Koch HF, Girard LA, Roundhill DM (1999) Polyhedron 18:2275–2279Google Scholar
  18. 18.
    Taube R (2002) In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds, vol 1, 2nd edn. Wiley-VCH, Weinheim, pp 513–524Google Scholar
  19. 19.
    Johns AM, Sakai N, Ridder A, Hartwig JF (2006) J Am Chem Soc 128:9306–9307Google Scholar
  20. 20.
    Chianese AR, Lee SJ, Gagné MR (2007) Angew Chem Int Ed 46:4042–4059Google Scholar
  21. 21.
    Müller TE (1998) Tetrahedron Lett 39:5961–5962Google Scholar
  22. 22.
    Müller TE, Pleier A-K (1999) J Chem Soc Dalton Trans 1999:583–587Google Scholar
  23. 23.
    Müller TE, Grosche M, Herdtweck E, Pleier A-K, Walter E, Yan Y-K (2000) Organometallics 19:170–183Google Scholar
  24. 24.
    Beller M, Eichberger M, Trauthwein H (1997) Angew Chem Int Ed Engl 36:2225–2227Google Scholar
  25. 25.
    Beller M, Trauthwein H, Eichberger M, Breindl C, Herwig J, Müller TE, Thiel OR (1999) Chem Eur J 1306–1319Google Scholar
  26. 26.
    Liu G, Stahl SS (2007) J Am Chem Soc 129:6328–6335Google Scholar
  27. 27.
    Michael FE, Cochran BM (2006) J Am Chem Soc 128:4246–4247Google Scholar
  28. 28.
    Butikofer JL, Hoerter JM, Peters RG, Roddick DM (2004) Organometallics 23:400–408Google Scholar
  29. 29.
    Romeo R, D’Amico G (2006) Organometallics 25:3435–3446Google Scholar
  30. 30.
    Eisenstein O, Hoffmann R (1980) J Am Chem Soc 102:6148–6149Google Scholar
  31. 31.
    Eisenstein O, Hoffmann R (1981) J Am Chem Soc 103:4308–4320Google Scholar
  32. 32.
    Cameron AD, Smith jun VH, Baird MC (1988) J Chem Soc Dalton Trans 1988:1037–1043Google Scholar
  33. 33*.
    Panunzi A, De Renzi A, Paiaro G (1970) J Am Chem Soc 92:3488–3489Google Scholar
  34. 34.
    Panunzi A, Paiaro G (1966) J Am Chem Soc 88:4843–4847Google Scholar
  35. 35.
    Pedone C, Benedetti E (1971) J Organomet Chem 29:443–449Google Scholar
  36. 36.
    Müller TE, Berger M, Grosche M, Herdtweck E, Schmidtchen FP (2001) Organometallics 20:4384–4393Google Scholar
  37. 37.
    Su RQ, Müller TE (2001) Tetrahedron 57:6027–6033Google Scholar
  38. 38.
    Seligson AL, Trogler WC (1993) Organometallics 12:744–751Google Scholar
  39. 39.
    Seul JM, Park S (2002) J Chem Soc Dalton Trans 2002:1153–1158Google Scholar
  40. 40.
    Senn HM, Blöchl PE, Togni A (2000) J Am Chem Soc 122:4098–4107Google Scholar
  41. 41.
    Johns AM, Utsunomiya M, Incarvito CD, Hartwig JF (2006) J Am Chem Soc 128:1828–1839Google Scholar
  42. 42*.
    Nettekoven U, Hartwig JF (2002) J Am Chem Soc 124:1166–1167Google Scholar
  43. 43*.
    Kawatsura M, Hartwig JF (2000) J Am Chem Soc 122:9546–9547Google Scholar
  44. 44.
    Utsunomiya M, Hartwig JF (2003) J Am Chem Soc 125:14286–14287Google Scholar
  45. 45.
    Sakai N, Ridder A, Hartwig JF (2006) J Am Chem Soc 128:8134–8135Google Scholar
  46. 46.
    Vo LK, Singleton DA (2004) Org Lett 6:2469–2472Google Scholar
  47. 47.
    Landis CR, Halpern J (1987) J Am Chem Soc 109:1746–1754Google Scholar
  48. 48.
    Kadota I, Shibuya A, Lutete LM, Yamamoto Y (1999) J Org Chem 64:4570–4571Google Scholar
  49. 49*.
    Lutete LM, Kadota I, Yamamoto Y (2004) J Am Chem Soc 126:1622–1623Google Scholar
  50. 50.
    Bajracharya GB, Huo Z, Yamamoto Y (2005) J Org Chem 70:4883–4886Google Scholar
  51. 51.
    Muetterties EL, Bleeke JR, Wuchere EJ, Albright TA (1982) Chem Rev 82:499–525Google Scholar
  52. 52.
    Takaya J, Hartwig JF (2005) J Am Chem Soc 127:5756–5757Google Scholar
  53. 53.
    Utsunomiya M, Hartwig JF (2004) J Am Chem Soc 126:2702–2703Google Scholar
  54. 54.
    Lappert M (2009) In: Metal amide chemistry. Wiley, ChichesterGoogle Scholar
  55. 55.
    Casalnuovo AL, Calabrese JC, Milstein D (1988) J Am Chem Soc 110:6738–6744Google Scholar
  56. 56*.
    Dorta R, Egli P, Zürcher F, Togni A (1997) J Am Chem Soc 119:10857–10858Google Scholar
  57. 57*.
    Patil NT, Lutete LM, Nishina N, Yamamoto Y (2006) Tetrahedron Lett 47:4749–4751Google Scholar
  58. 58.
    Burling S, Field LD, Messerle BA, Rumble SL (2007) Organometallics 26:4335–4343Google Scholar
  59. 59.
    Yin Y, Ma W, Chai Z, Zhao G (2007) J Org Chem 72:5731–5736Google Scholar
  60. 60.
    Kondo T, Okada T, Suzuki T, Mitsudo T (2001) J Organomet Chem 622:149–154Google Scholar
  61. 61.
    Field LD, Messerle BA, Vuong KQ, Turner P, Failes T (2007) Organometallics 26:2058–2069Google Scholar
  62. 62.
    Krogstad DA, Cho J, DeBoer AJ, Klitzke JA, Sanow WR, Williams HA, Halfen JA (2006) Inorg Chim Acta 359:136–148Google Scholar
  63. 63.
    Carney JM, Donoghue PJ, Wuest WM, Wiest O, Helquist P (2008) Org Lett 10:3903–3906Google Scholar
  64. 64.
    Fukuda Y, Utimoto K, Nozaki H (1987) Heterocycles 25:297–300Google Scholar
  65. 65.
    Meyer N, Löhnwitz K, Zulys A, Roesky PW, Dochnahl M, Blechert S (2006) Organometallics 25:3730–3734Google Scholar
  66. 66.
    Takei I, Enta Y, Wakebe Y, Suzuki T, Hidai M (2006) Chem Lett 35:590–591Google Scholar
  67. 67.
    Zulys A, Dochnahl M, Hollmann D, Löhnwitz K, Herrmann J-S, Roesky PW, Blechert S (2005) Angew Chem Int Ed 44:7794–7798Google Scholar
  68. 68.
    Biyikal M, Löhnwitz K, Meyer N, Dochnahl M, Roesky PW, Blechert S (2010) Eur J Inorg Chem 1070–1081Google Scholar
  69. 69.
    Clentsmith GKB, Field LD, Messerle BA, Shasha A, Turner P (2009) Tetrahedron Lett 50:1469–1471Google Scholar
  70. 70.
    Li X, Chianese AR, Vogel T, Crabtree RH (2005) Org Lett 7:5437–5440Google Scholar
  71. 71.
    Lai R-Y, Surekha K, Hayashi A, Ozawa F, Liu Y-H, Peng S-M, Liu S-T (2007) Organometallics 26:1062–1068Google Scholar
  72. 72.
    Iritani K, Matsubara S, Utimoto K (1988) Tetrahedron Lett 29:1799–1802Google Scholar
  73. 73.
    Fürstner A, Davies PW (2005) J Am Chem Soc 127:15024–15025Google Scholar
  74. 74.
    Hiroya K, Itoh S, Sakamoto T (2004) J Org Chem 69:1126–1136Google Scholar
  75. 75.
    Arcadi A, Bianchi G, Marinelli F (2004) Synthesis 2004:610–618Google Scholar
  76. 76.
    Ambrogio I, Arcadi A, Cacchi S, Fabrizi G, Marinelli F (2007) Synlett 2007:1775–1779Google Scholar
  77. 77.
    Sashida H, Kawamukai A (1999) Synthesis 1999:1145–1148Google Scholar
  78. 78.
    Ding Q, Ye Y, Fan R, Wu J (2007) J Org Chem 72:5439–5442Google Scholar
  79. 79.
    Enomoto T, Girard A-L, Yasui Y, Takemoto Y (2009) J Org Chem 74:9158–9164Google Scholar
  80. 80.
    Hashmi ASK, Rudolph M, Schymura S, Visus J, Frey W (2006) Eur J Org Chem 2006:4905–4909Google Scholar
  81. 81.
    Kang J-E, Kim H-B, Lee J-W, Shin S (2006) Org Lett 8:3537–3540Google Scholar
  82. 82.
    Dieter RK, Chen N, Yu H, Nice LE, Gore VK (2005) J Org Chem 70:2109–2119Google Scholar
  83. 83.
    Tsuhako A, Oikawa D, Sakai K, Okamoto S (2008) Tetrahedron Lett 49:6529–6532Google Scholar
  84. 84*.
    Morita N, Krause N (2006) Eur J Org Chem 2006:4634–4641Google Scholar
  85. 85.
    Gockel B, Krause N (2006) Org Lett 8:4485–4488Google Scholar
  86. 86.
    Arseniyadis S, Gore J (1983) Tetrahedron Lett 37:3997–4000Google Scholar
  87. 87.
    Lathbury D, Gallagher T (1986) J Chem Soc Chem Commun 1986:114–115Google Scholar
  88. 88.
    Manzo AM, Perboni AD, Broggini G, Rigamonti M (2009) Tetrahedron Lett 50:4696–4699Google Scholar
  89. 89*.
    Zhang Z, Liu C, Kinder RE, Han X, Qian H, Widenhoefer RA (2006) J Am Chem Soc 128:9066–9073Google Scholar
  90. 90*.
    Zhang Z, Bender CF, Widenhoefer RA (2007) Org Lett 9:2887–2889Google Scholar
  91. 91*.
    Zhang Z, Bender CF, Widenhoefer RA (2007) J Am Chem Soc 129:14148–14149Google Scholar
  92. 92*.
    LaLonde RL, Sherry BD, Kang EJ, Toste FD (2007) J Am Chem Soc 129:2452–2453Google Scholar
  93. 93*.
    LaLonde RL, Wang ZJ, Mba M, Lackner AD, Toste FD (2010) Angew Chem Int Ed 49:598–601Google Scholar
  94. 94.
    Bartolomé C, García-Cuadrado D, Ramiro Z, Espinet P (2010) Organometallics 29:3589–3592Google Scholar
  95. 95*.
    Hamilton GL, Kang EJ, Mba M, Toste FD (2007) Science 317:496–499Google Scholar
  96. 96.
    Meguro M, Yamamoto Y (1998) Tetrahedron Lett 39:5421–5424Google Scholar
  97. 97.
    Qiu S, Wei Y, Liu G (2009) Chem Eur J 15:2751–2754Google Scholar
  98. 98.
    Julian LD, Hartwig JF (2010) J Am Chem Soc 132:13813–13822Google Scholar
  99. 99.
    Yeh M-CP, Pai H-F, Lin Z-J, Lee B-R (2009) Tetrahedron 65:4789–4794Google Scholar
  100. 100.
    Komeyama K, Morimoto T, Takaki K (2006) Angew Chem Int Ed 45:2938–2941Google Scholar
  101. 101.
    Liu Z, Hartwig JF (2008) J Am Chem Soc 130:1570–1571Google Scholar
  102. 102*.
    Shen X, Buchwald SL (2010) Angew Chem Int Ed 49:564–567Google Scholar
  103. 103.
    Hesp KD, Stradiotto M (2009) Org Lett 11:1449–1452Google Scholar
  104. 104.
    Hesp KD, Tobisch S, Stradiotto M (2010) J Am Chem Soc 132:413–426Google Scholar
  105. 105.
    Cochran BM, Michael FE (2008) J Am Chem Soc 130:2786–2792Google Scholar
  106. 106.
    Bender CF, Widenhoefer RA (2005) J Am Chem Soc 127:1070–1071Google Scholar
  107. 107.
    Bender CF, Hudson WB, Widenhoefer RA (2008) Organometallics 27:2356–2358Google Scholar
  108. 108.
    Ohmiya H, Moriya T, Sawamura M (2009) Org Lett 11:2145–2147Google Scholar
  109. 109.
    Zhang J, Yang C-G, He C (2006) J Am Chem Soc 128:1798–1799Google Scholar
  110. 110.
    Liu X-Y, Li C-H, Che C-M (2006) Org Lett 8:2707–2710Google Scholar
  111. 111.
    Bender CF, Widenhoefer RA (2006) Chem Commun 2006:4143–4144Google Scholar
  112. 112.
    LaLonde RL, Brenzovich WE Jr, Benitez D, Tkatchouk E, Kelley K, Goddard WA III, Toste FD (2010) Chem Sci 1:226–233Google Scholar
  113. 113.
    Bender CF, Widenhoefer RA (2006) Org Lett 8:5303–5305Google Scholar
  114. 114.
    Bender CF, Widenhoefer RA (2006) Chem Commun 2008:4143–4144Google Scholar
  115. 115.
    Xu T, Qiu S, Liu G (2011) J Organomet Chem 696:46–49Google Scholar
  116. 116*.
    Takemiya A, Hartwig JF (2006) J Am Chem Soc 128:6042–6043Google Scholar
  117. 117.
    Uchimaru Y (1999) Chem Commun 1999:1133–1134Google Scholar
  118. 118.
    Tokunaga M, Eckert M, Wakatsuki Y (1999) Angew Chem Int Ed 38:3222–3225Google Scholar
  119. 119.
    Hartung CG, Tillack A, Trauthwein H, Beller M (2001) J Org Chem 66:6339–6343Google Scholar
  120. 120.
    Shaffer AR, Schmidt JAR (2008) Organometallics 27:1259–1266Google Scholar
  121. 121.
    Shimada T, Bajracharya GB, Yamamoto Y (2005) Eur J Org Chem 2005:59–62Google Scholar
  122. 122.
    Brunet J-J, Chu NC, Diallo O, Vincendeau S (2005) J Mol Catal A Chem 240:245–248Google Scholar
  123. 123.
    Mizushima E, Hayashi T, Tanaka M (2003) Org Lett 5:3349–3352Google Scholar
  124. 124.
    Zeng X, Frey GD, Kousar S, Bertrand G (2009) Chem Eur J 15:3056–3060Google Scholar
  125. 125.
    Dash C, Shaikh MM, Butcher RJ, Ghosh P (2010) Inorg Chem 49:4972–4983Google Scholar
  126. 126.
    Bódis J, Müller TE, Lercher JA (2003) Green Chem 5:227–231Google Scholar
  127. 127.
    Klein DP, Ellern A, Angelici RJ (2004) Organometallics 23:5662–5670Google Scholar
  128. 128.
    Kondo T, Tanaka A, Kotachi S, Watanabe Y (1995) J Chem Soc Chem Commun 1995:413–414Google Scholar
  129. 129.
    Gooßen LJ, Rauhaus JE, Deng G (2005) Angew Chem Int Ed 44:4042–4045Google Scholar
  130. 130.
    Fukumoto Y, Asai H, Shimizu M, Chatani N (2007) J Am Chem Soc 129:13792–13793Google Scholar
  131. 131.
    Besson L, Goré J, Cazes B (1995) Tetrahedron Lett 36:3857–3860Google Scholar
  132. 132.
    Al-Masum M, Meguro M, Yamamoto Y (1997) Tetrahedron Lett 38:6071–6074Google Scholar
  133. 133.
    Fox DNA, Lathbury D, Mahon MF, Molloy KC, Gallagher T (1989) J Chem Soc Chem Commun 1989:1073–1075Google Scholar
  134. 134*.
    Nishina N, Yamamoto Y (2006) Angew Chem Int Ed 45:3314–3317Google Scholar
  135. 135.
    Nishina N, Yamamoto Y (2007) Synlett 2007:1767–1770Google Scholar
  136. 136*.
    Wang ZJ, Benitez D, Tkatchouk E, Goddard WA III, Toste FD (2010) J Am Chem Soc 132:13064–13071Google Scholar
  137. 137.
    Zeng X, Soleilhavoup M, Bertrand G (2009) Org Lett 11:3166–3169Google Scholar
  138. 138.
    Kinder RE, Zhang Z, Widenhoefer RA (2008) Org Lett 10:3157–3159Google Scholar
  139. 139.
    Yi CS, Yun SY (2005) Org Lett 7:2181–2183Google Scholar
  140. 140.
    Pawlas J, Nakao Y, Kawatsura M, Hartwig JF (2002) J Am Chem Soc 124:3669–3679Google Scholar
  141. 141*.
    Löber O, Kawatsura M, Hartwig JF (2001) J Am Chem Soc 123:4366–4367Google Scholar
  142. 142.
    Minami T, Okamoto H, Ikeda S, Tanaka R, Ozawa F, Yoshifuji M (2001) Angew Chem Int Ed 40:4501–4503Google Scholar
  143. 143.
    Qin H, Yamagiwa N, Matsunaga S, Shibasaki M (2006) J Am Chem Soc 128:1611–1614Google Scholar
  144. 144.
    Brouwer C, He C (2006) Angew Chem Int Ed 45:1744–1747Google Scholar
  145. 145.
    Giner X, Nájera C (2008) Org Lett 10:2919–2922Google Scholar
  146. 146.
    Michaux J, Terrasson V, Marque S, Wehbe J, Prim D, Campagne J-M (2007) Eur J Org Chem 2007:2601–2603Google Scholar
  147. 147*.
    Zhou J(S), Hartwig JF (2008) J Am Chem Soc 130:12220–12221Google Scholar
  148. 148*.
    Hu A, Ogasawara M, Sakamoto T, Okada A, Nakajima K, Takahashi T, Lin W (2006) Adv Synth Catal 348:2051–2056Google Scholar
  149. 149.
    Li K, Horton PN, Hursthouse MB, Hii KK(M) (2003) J Organomet Chem 665:250–257Google Scholar
  150. 150.
    Qian H, Widenhoefer RA (2005) Org Lett 7:2635–2638Google Scholar
  151. 151.
    Karshtedt D, Bell AT, Tilley TD (2005) J Am Chem Soc 127:12640–12646Google Scholar
  152. 152.
    Brunet J-J, Chu NC, Diallo O (2005) Organometallics 24:3104–3110Google Scholar
  153. 153.
    Taylor JG, Whittall N, Hii KK(M) (2006) Org Lett 8:3561–3564Google Scholar
  154. 154*.
    Zhang Z, Lee SD, Widenhoefer RA (2009) J Am Chem Soc 131:5372–5373Google Scholar
  155. 155.
    Utsunomiya M, Kuwano R, Kawatsura M, Hartwig JF (2003) J Am Chem Soc 125:5608–5609Google Scholar
  156. 156.
    Munro-Leighton C, Delp SA, Blue ED, Gunnoe TB (2007) Organometallics 26:1483–1493Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceShizuoka UniversityShizuokaJapan
  2. 2.The State Key Laboratories of Fine ChemicalsDalian University of TechnologyDalianChina
  3. 3.WPI-Advanced Institute for Materials Research (WPI-AIMR)Tohoku UniversitySendaiJapan

Personalised recommendations