Advertisement

Carbonylations of Aldehydes

  • Axel Jacobi von Wangelin
  • Helfried Neumann
  • Matthias Beller
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 18)

Abstract

Synthetically useful examples of carbonylations of aldehydes that enable the synthesis of structurally diverse carbonyl compounds such as α-amino acids, α-hydroxy carbonyl compounds, furanones, and lactones will be highlighted in this chapter.

Carbonylations Aldehydes Catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beller M, Eckert M (2000) Angew Chem Int Ed 39:1010 CrossRefGoogle Scholar
  2. 2.
    Jacobi von Wangelin A, Neumann H, Gördes D, Beller M (2004) In: Beller M, Bolm C (eds) Transition metals for organic synthesis. Wiley, Weinheim, p 133 Google Scholar
  3. 3.
    Wakamatsu H, Uda J, Yamakami N (1971) Chem Commun 1540 Google Scholar
  4. 4.
    Wakamatsu H, Uda J, Yamakami N (1971) DE-B 2115 985 Google Scholar
  5. 5.
    Wakamatsu H (1989) Kagaku 44:448 Google Scholar
  6. 6.
    Knifton JF (1996) In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds. VCH, Weinheim, p 159 Google Scholar
  7. 7.
    Ojima I (1988) Chem Rev 88:1011 CrossRefGoogle Scholar
  8. 8.
    Dyker G (2000) In: Schmalz HG (ed) Organic synthesis highlights IV. Wiley, Weinheim, p 53 Google Scholar
  9. 9.
    Drauz K, Waldmann H (1995) Enzyme catalysis in organic synthesis. VCH, Weinheim Google Scholar
  10. 10.
    Ojima I, Zhang Z (1990) Organometallics 9:3122 CrossRefGoogle Scholar
  11. 11.
    Stern R, Reffet D, Hirschauer A, Commereuc D, Chauvin Y (1982) Synth Commun 12:1111 Google Scholar
  12. 12.
    Lin JJ (1986) US Patent A 4 620 949 Google Scholar
  13. 13.
    Lin JJ, Knifton JF (1991) J Organomet Chem 417:99 CrossRefGoogle Scholar
  14. 14.
    Knifton JF, Lin JJ, Storm DA, Wong SF (1993) Catal Today 18:355 CrossRefGoogle Scholar
  15. 15.
    Lin JJ, Knifton JF, Yeakey EL (1987) US Patent 4 918 222 Google Scholar
  16. 16.
    Drent E, Kragtwijk E (1991) GB 2 252 770 Google Scholar
  17. 17.
    Wakamatsu H (1974) Sekiyu Gakkaishi 17:105 Google Scholar
  18. 18.
    Stern R, Hirschauer A, Commereuc D, Chauvin Y (1981) US Patent 4 264 515 Google Scholar
  19. 19.
    Ojima I, Hirai K, Fujita M, Fuchikami T (1985) J Organomet Chem 279:203 CrossRefGoogle Scholar
  20. 20.
    Ojima I, Okabe M, Kato K, Kwon HB, Horvath IT (1988) J Am Chem Soc 110:150 CrossRefGoogle Scholar
  21. 21.
    Izawa K (1988) Yuki Gosei Kagaku Kyokaishi 46:218 Google Scholar
  22. 22.
    Lin JJ (1988) US Patent 4 720 573 Google Scholar
  23. 23.
    Hirai K, Takahashi Y, Ojima I (1982) Tetrahedron Lett 23:2491 CrossRefGoogle Scholar
  24. 24.
    Lin JJ, Knifton JF (1997) Catal Lett 45:139 CrossRefGoogle Scholar
  25. 25.
    de Vries JG, de Boer RP, Hogeweg M, Gielens EECG (1996) J Org Chem 61:1842 CrossRefGoogle Scholar
  26. 26.
    Beller M, Fischer H, Gross P, Gerdau T, Geissler H, Bogdanovic S (1995) DE-B 4415 712 Google Scholar
  27. 27.
    Bogdanovic S, Geissler H, Beller M, Fischer H, Raab K (1995) DE-B 195 45 641 A1 Google Scholar
  28. 28.
    Takigawa S, Shinke S, Tanaka M (1990) Chem Lett 1415 Google Scholar
  29. 29.
    Sakakura T, Huang XY, Tanaka M (1991) Bull Chem Soc Jpn 64:1707 CrossRefGoogle Scholar
  30. 30.
    Jägers E, Koll HP (1989) EP-B 0 338 330 B1 Google Scholar
  31. 31.
    Beller M, Eckert M, Vollmüller F, Geissler H, Bogdanovic S (1996) DE-B 196 27 717 Google Scholar
  32. 32.
    Beller M, Eckert M, Vollmüller F, Bogdanovic S, Geissler H (1997) Angew Chem Int Ed 36:1494 CrossRefGoogle Scholar
  33. 33.
    Beller M, Eckert M, Vollmüller F (1998) J Mol Catal 135:23 CrossRefGoogle Scholar
  34. 34.
    Gördes D, Neumann H, Jacobi von Wangelin A, Fischer C, Drauz K, Krimmer HP, Beller M (2003) Adv Synth Catal 345:510 CrossRefGoogle Scholar
  35. 35.
    Jacobi von Wangelin A, Neumann H, Gördes D, Klaus S, Strübing D, Beller M (2003) Chem Eur J 9:4286 CrossRefGoogle Scholar
  36. 36.
    Freed DA, Kozlowski MC (2001) Tetrahedron Lett 42:3403 CrossRefGoogle Scholar
  37. 37.
    Beller M, Eckert M, Moradi W, Neumann H (1999) Angew Chem Int Ed 38:1454 CrossRefGoogle Scholar
  38. 38.
    Seeliger W, Hesse KD (1974) US Patent A 3846 419 Google Scholar
  39. 39.
    Becke F, Gnad J (1968) Liebigs Ann Chem 713:212 Google Scholar
  40. 40.
    Becke F, Fleig H, Pässler P (1971) Liebigs Ann Chem 749:198 Google Scholar
  41. 41.
    Beller M, Eckert M, Moradi WA (1999) Synlett 108 Google Scholar
  42. 42.
    Beller M, Eckert M, Holla EW (1998) J Org Chem 63:5658 CrossRefGoogle Scholar
  43. 43.
    Beller M, Moradi WA, Eckert M (1999) Tetrahedron Lett 40:4523 CrossRefGoogle Scholar
  44. 44.
    Beller M, Eckert M, Geissler H, Napierski B, Rebenstock HP, Holla EW (1998) Chem Eur J 4:935 CrossRefGoogle Scholar
  45. 45.
    Chan ASC, Carroll WE, Willis DE (1983) J Mol Cat 19:377 CrossRefGoogle Scholar
  46. 46.
    Okano T, Makino M, Konishi H, Kiji J (1985) Chem Lett 1793 Google Scholar
  47. 47.
    Murai S, Kato T, Sonoda N, Seki Y, Kawamato K (1979) Angew Chem 91:421 Google Scholar
  48. 48.
    Wright ME, Cochran BB (1993) J Am Chem Soc 115:2059 CrossRefGoogle Scholar
  49. 49.
    Ojima I, Tzamarioudaki M, Tsai CY (1994) J Am Chem Soc 116:3643 CrossRefGoogle Scholar
  50. 50.
    Kablaoui NM, Hicks FA, Buchwald SL (1996) J Am Chem Soc 118:5818 CrossRefGoogle Scholar
  51. 51.
    Crowe WE, Vu AT (1996) J Am Chem Soc 118:1557 CrossRefGoogle Scholar
  52. 52.
    Kablaoui NM, Hicks FA, Buchwald SL (1997) J Am Chem Soc 119:4424 CrossRefGoogle Scholar
  53. 53.
    Chatani N, Morimoto T, Murai S (1998) J Am Chem Soc 120:5335 CrossRefGoogle Scholar
  54. 54.
    Kang SK, Kim KJ, Hong YT (2002) Angew Chem 114:1654 CrossRefGoogle Scholar
  55. 55.
    Seyferth D, Weinstein RM, Hui RC, Wang WL, Archer CM (1992) J Org Chem 57:5620 CrossRefGoogle Scholar
  56. 56.
    Seyferth D, Weinstein RM, Wang WL, Hui RC (1983) Tetrahedron Lett 24:4907 CrossRefGoogle Scholar
  57. 57.
    Murai S, Ryu I, Iriguchi J, Sonoda N (1984) J Am Chem Soc 106:2440 CrossRefGoogle Scholar
  58. 58.
    Harada S, Taguchi T, Tabuchi N, Narita K, Hanzawa Y (1998) Angew Chem 110:1796 CrossRefGoogle Scholar
  59. 59.
    Satoh T, Tsuda T, Kushiäno Y, Miura M, Nomura M (1996) J Org Chem 61:6476 CrossRefGoogle Scholar
  60. 60.
    Satoh T, Tsuda T, Terao Y, Miura M, Nomura M (1999) J Mol Cat 143:203 CrossRefGoogle Scholar
  61. 61.
    Bahrman A (1980) In: Falbe J (ed) New synthesis with carbon monoxide. Springer, Berlin, p 372 Google Scholar
  62. 62.
    Woo EP, Cheng FCW (1986) J Org Chem 51:3706 CrossRefGoogle Scholar
  63. 63.
    Mori S, Emura K, Kano M, Kudo K, Komatsu K, Sugita N (1995) Tetrahedron 51:8977 CrossRefGoogle Scholar
  64. 64.
    Cavinato G, Toniolo L (1991) J Mol Cat 69:283 CrossRefGoogle Scholar
  65. 65.
    Steinhuebel DP, Lippard SJ (1999) J Am Chem Soc 121:11762 CrossRefGoogle Scholar
  66. 66.
    Colson PJ, Hegedus LS (1994) J Org Chem 59:4972 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Axel Jacobi von Wangelin
    • 1
  • Helfried Neumann
    • 1
  • Matthias Beller
    • 1
  1. 1.Leibniz-Institute for Catalysis e.V. an der Universität RostockRostockGermany

Personalised recommendations