Advertisement

Set Theory pp 55-82 | Cite as

Small Definably-large Cardinals

  • Roger Bosch
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

We study the definably-Mahlo, definably-weakly-compact, and the definably-indescribable cardinals, which are the definable versions of, respectively, Mahlo, weakly-compact, and indescribable cardinals. We study their strength as large cardinals and we show that the relationship between them is almost the same as the relationship between Mahlo, weakly-compact and indescribable cardinals.

Keywords

Extension Property Tree Property Large Cardinal Measurable Cardinal Satisfaction Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Aczel and W. Richter, “Inductive definitions and analogues of large cardinals” in W. Hodges, Ed. Conference in Mathematical Logic-London’70 (Proceedings of a Conference; Bedford College, London 1970), (Springer, Berlin, 1972).Google Scholar
  2. [2]
    P. Aczel and W. Richter: “Inductive definitions and reflecting properties of admissible ordinals” in J.E. Fenstad and P.G. Hinman, Eds. Generalized Recursion Theory (North-Holland, Amsterdam, 1974).Google Scholar
  3. [3]
    A. Andretta: “Large cardinals and iteration trees of height ω”, Annals of Pure and Applied Logic, 54 (1991), 1–15.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Baeten: “Filters and ultrafilters over definable subsets of admissible ordinals” in G.H. Müller and M.M. Richter, eds. Models and sets (Aachen, 1983) (Springer-Verlag, Berlin, 1984).Google Scholar
  5. [5]
    J. Baeten: Filters and ultrafilters over definable subsets of admissible ordinals, (Centrum voor Wiskunde en Informatica, CWI, Amsterdam, 1986).Google Scholar
  6. [6]
    J. Bagaria and R. Bosch: “Solovay models and forcing extensions”, The Journal of Symbolic Logic, 69 (2004), 742–766.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Bagaria and R. Bosch: “Proper forcing extensions and Solovay models”, Archive for Mathematical Logic, 43 (2004), 739–750zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    J. Bagaria and R. Bosch: “Generic absoluteness under projective forcing”, forthcoming.Google Scholar
  9. [9]
    K. Devlin: “Indescribability properties and small large cardinals” in G.H. Müller, A. Oberschel and K. Potthoff, eds. ISILC Logic Conference. Proceedings of the International Summer Institute and Logic Colloquium, Kiel, 1974 (Springer-Verlag, Berlin, 1975).Google Scholar
  10. [10]
    F.R. Drake: Set Theory. An introduction to large cardinals, (North-Holland, Amsterdam, 1974)zbMATHGoogle Scholar
  11. [11]
    K. Hauser: “Indescribable cardinals and elementary embeddings”, The Journal of Symbolic Logic, 56 (1991), 439–457.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    K. Hauser: “The indescribability of the order of the indescribable cardinals”, Annals of Pure and Applied Logic, 57 (1992), 45–91.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Jech: Set Theory. The Third Millennium Edition, Revised and Expanded, (Springer, Berlin, 2003)zbMATHGoogle Scholar
  14. [14]
    A. Kanamori: The Higher Infinite, (Springer, Berlin, 1997)zbMATHGoogle Scholar
  15. [15]
    M. Kaufmann: “On existence of Σn end extensions” in M. Lerman, J.H. Schmerl and R.I. Soare, Eds. Logic Year 1979–80 (Springer, Berlin, 1981).Google Scholar
  16. [16]
    M. Kaufmann: “Blunt and topless end extensions of models of set theory”, The Journal of Symbolic Logic, 48 (1983), 1053–1073.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Kaufman and E. Kranakis: “Definable ultrapowers over admissible ordinals”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 30 (1984), 97–118.Google Scholar
  18. [18]
    E. Kranakis: “Reflection and partition properties of admissible ordinals”, Annals of Mathematical Logic, 22 (1982), 213–242.zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    E. Kranakis: “Invisible ordinals and inductive definitions”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 28 (1982), 137–148.zbMATHMathSciNetGoogle Scholar
  20. [20]
    E. Kranakis: “Definable ultrafilters and end extensions of constructible sets”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 28 (1982), 395–412.zbMATHMathSciNetGoogle Scholar
  21. [21]
    E. Kranakis: “Definable Ramsey and definable Erdös cardinals”, Archiv für Mathematische Logik und Grundlagenforschung, 23 (1983), 115–128.zbMATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    E. Kranakis: “Stepping up lemmas in definable partitions” The Journal of Symbolic Logic, 49 (1984), 22–31.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    E. Kranakis: “Definable partitions and reflection properties for regular cardinals”, Notre Dame Journal of Formal Logic, 26 (1985), 408–412.zbMATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    E. Kranakis: “Definable partitions and the projectum”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 31 (1985), 351–355.zbMATHMathSciNetGoogle Scholar
  25. [25]
    E. Kranakis and I. Phillips, “Partitions and homogeneous sets for admissible ordinals” in G.H. Müller and M.M. Richter, eds. Models and sets (Aachen, 1983) (Springer-Verlag, Berlin, 1984)Google Scholar
  26. [26]
    A. Leshem: “On the consistency of the definable tree property on 1”, The Journal of Symbolic Logic, 65 (2000), 1204–1214.zbMATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    Y.N. Moschovakis, “Indescribable cardinals in L”, The Journal of Symbolic Logic, 41 (1976), 554–555Google Scholar
  28. [28]
    W. Richter: “Recursively Mahlo ordinals and inductive definitions” in R.O. Gandy and C.M.E. Yates, Eds. Logic Colloquium’ 69: Proceedings of the Summer School and Colloquium in Mathematical Logic, Manchester, August of 1969 (Amsterdam, North-Holland, 1971)Google Scholar
  29. [29]
    W. Richter: “The least Σ12 and П12 reflecting ordinals” in G. H. Müller, A. Oberschel and K. Potthoff, eds. ISILC Logic Conference. Proceedings of the International Summer Institute and Logic Colloquium, Kiel, 1974 (Springer-Verlag, Berlin, 1975)Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Roger Bosch
    • 1
  1. 1.Dpto. de FilosofíaUniversidad de OviedoOviedoSpain

Personalised recommendations