Teodorescu Transform Decomposition of Multivector Fields on Fractal Hypersurfaces

  • Ricardo Abreu-Blaya
  • Juan Bory-Reyes
  • Tania Moreno-García
Part of the Operator Theory: Advances and Applications book series (OT, volume 167)


In this paper we consider Jordan domains in real Euclidean spaces of higher dimension which have fractal boundaries. The case of decomposing a Hölder continuous multivector field on the boundary of such domains is obtained in closed form as sum of two Hölder continuous multivector fields harmonically extendable to the domain and to the complement of its closure respectively. The problem is studied making use of the Teodorescu transform and suitable extension of the multivector fields. Finally we establish equivalent condition on a Hölder continuous multivector field on the boundary to be the trace of a harmonic Hölder continuous multivector field on the domain.


Clifford analysis Fractals Teodorescu-transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Abreu and J. Bory: Boundary value problems for quaternionic monogenic functions on non-smooth surfaces. Adv. Appl. Clifford Algebras, 9, No.1, 1999: 1–22.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    R. Abreu, J. Bory, R. Delanghe and F. Sommen: Harmonic multivector fields and the Cauchy integral decomposition in Clifford analysis. BMS Simon Stevin, 11, No 1, 2004: 95–110.MATHGoogle Scholar
  3. [3]
    R. Abreu, J. Bory, R. Delanghe and F. Sommen: Cauchy integral decomposition of multi-vector-valued functions on hypersurfaces. Computational Methods and Function Theory, Vol. 5, No. 1, 2005: 111–134MathSciNetMATHGoogle Scholar
  4. [4]
    R. Abreu, J. Bory, O. Gerus and M. Shapiro: The Clifford/Cauchy transform with a continuous density; N. Davydov’s theorem. Math. Meth. Appl. Sci, Vol. 28, No. 7, 2005: 811–825.CrossRefMATHGoogle Scholar
  5. [5]
    R. Abreu, J. Bory and T. Moreno: Integration of multi-vector-valued functions over fractal hypersurfaces. In preparation.Google Scholar
  6. [6]
    R. Abreu, D. Peña, J. Bory: Clifford Cauchy Type Integrals on Ahlfors-David Regular Surfaces in Rm+1. Adv. Appl. Clifford Algebras 13 (2003), No. 2, 133–156.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    R. Abreu, J. Bory and D. Peña: Jump problem and removable singularities for monogenic functions. Submitted.Google Scholar
  8. [8]
    R. Abreu, J. Bory and M. Shapiro: The Cauchy transform for the Hodge/deRham system and some of its properties. Submitted.Google Scholar
  9. [9]
    J. Bory and R. Abreu: Cauchy transform and rectifiability in Clifford Analysis. Z. Anal. Anwend, 24, No 1, 2005: 167–178.MATHCrossRefGoogle Scholar
  10. [10]
    F. Brackx, R. Delanghe and F. Sommen: Clifford analysis. Research Notes in Mathematics, 76. Pitman (Advanced Publishing Program), Boston, MA, 1982. x+308 pp. ISBN: 0-273-08535-2 MR 85j:30103.MATHGoogle Scholar
  11. [11]
    F. Brackx, R. Delanghe and F. Sommen: Differential Forms and/or Multivector Functions. Cubo 7 (2005), no. 2, 139–169.MathSciNetMATHGoogle Scholar
  12. [12]
    R. Delanghe, F. Sommen and V. Souícek: Clifford algebra and spinor-valued functions. A function theory for the Dirac operator. Related REDUCE software by F. Brackx and D. Constales. With 1 IBM-PC floppy disk (3.5 inch). Mathematics and its Applications, 53. Kluwer Academic Publishers Group, Dordrecht, 1992. xviii+485 pp. ISBN: 0-7923-0229-X MR 94d:30084.MATHGoogle Scholar
  13. [13]
    E. Dyn’kin: Cauchy integral decomposition for harmonic forms. Journal d’Analyse Mathématique. 1997; 37: 165–186.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Falconer, K.J.: The geometry of fractal sets. Cambridge Tracts in Mathematics, 85. Cambridge University Press, Cambridge, 1986.Google Scholar
  15. [15]
    Feder, Jens.: Fractals. With a foreword by Benoit B. Mandelbrot. Physics of Solids and Liquids. Plenum Press, New York, 1988.MATHGoogle Scholar
  16. [16]
    H. Federer: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag, New York Inc.,(1969) New York, xiv+676 pp.Google Scholar
  17. [17]
    J. Gilbert, J. Hogan and J. Lakey: Frame decomposition of form-valued Hardy spaces. In Clifford Algebras in analysis and related topics, Ed. J. Ryan CRC Press, (1996), Boca Raton, 239–259.Google Scholar
  18. [18]
    J. Gilbert and M. Murray: Clifford algebras and Dirac operators in harmonic analysis. Cambridge Studies in Advanced Mathematics 26, Cambridge, 1991.Google Scholar
  19. [19]
    K. Gürlebeck and W. Sprössig: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley and Sons Publ., 1997.Google Scholar
  20. [20]
    J. Harrison and A. Norton: Geometric integration on fractal curves in the plane. Indiana University Mathematical Journal, 4, No. 2, 1992: 567–594.MathSciNetGoogle Scholar
  21. [21]
    J. Harrison and A. Norton: The Gauss-Green theorem for fractal boundaries. Duke Mathematical Journal, 67, No. 3, 1992: 575–588.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    B.A. Kats: The Riemann problem on a closed Jordan curve. Izv. Vuz. Matematika, 27, No. 4, 1983: 68–80.MathSciNetGoogle Scholar
  23. [23]
    B.A. Kats: On the solvability of the Riemann boundary value problem on a fractal arc. (Russian) Mat. Zametki 53 (1993), no. 5, 69–75; translation in Math. Notes 53 (1993), No. 5–6, 502–505.MATHMathSciNetGoogle Scholar
  24. [24]
    B.A. Kats: Jump problem and integral over nonrectifiable curve. Izv. Vuz. Matematika 31, No. 5, 1987: 49–57.MATHMathSciNetGoogle Scholar
  25. [25]
    M.L. Lapidus and H. Maier: Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée. (French) [The Riemann hypothesis, vibrating fractal strings and the modified Weyl-Berry conjecture] C.R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 1, 19–24. 1991.MATHMathSciNetGoogle Scholar
  26. [26]
    E.M. Stein: Singular integrals and differentiability properties of functions. Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, N.J. 1970.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Ricardo Abreu-Blaya
    • 1
  • Juan Bory-Reyes
    • 2
  • Tania Moreno-García
    • 2
  1. 1.Facultad de Informatica y MatematicaUniversidad de HolguinCuba
  2. 2.Departmento of MatematicaUniversidad de OrienteCuba

Personalised recommendations