Vaccination therapies in solid tumors

  • Alfonsus J. M. van den Eertwegh
Part of the Milestones in Drug Therapy book series (MDT)


Over the last two decades there has been a great deal of interest in specific immunotherapies. Particularly in the field of passive immunotherapy, using tumor-specific antibodies, some interesting successes have been reported. The humanized monoclonal antibody, Herceptin, directed to the Her-2-neu antigen is now an established standard modality in the treatment of breast cancer patients, whose tumor is overexpressing the Her-2-neu antigen [1]. Cetuximab, a monoclonal antibody specific for another epidermal growth factor receptor, is about to be registered for the treatment of metastatic colon cancer [2]. The treatment with anti-CD20 monoclonal antibodies improves the prognosis of lymphoma patients and is now considered as a standard immunotherapy for B cell lymphomas [3]. All together it took more than 30 years before monoclonal antibodies have evolved to a standard treatment in cancer. It is important to realize that it was no more than 10 years ago that the perspectives of this type of passive immunotherapy were not so promising. The humanization of monoclonal antibodies was a real breakthrough and opened the way for this type of treatment.


Clin Oncol Metastatic Melanoma Antitumor Immunity Autologous Tumor Cell Active Specific Immunotherapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792PubMedCrossRefGoogle Scholar
  2. 2.
    Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22: 1201–1208PubMedCrossRefGoogle Scholar
  3. 3.
    Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den Neste E, Salles G, Gaulard P et al. (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346: 235–242PubMedCrossRefGoogle Scholar
  4. 4.
    Pardoll DM (1998) Cancer vaccines. Nat Med 4: 525–531PubMedCrossRefGoogle Scholar
  5. 5.
    Delves PJ, Roitt IM (2000) The immune system. First of two parts. N Engl J Med 343: 37–49PubMedCrossRefGoogle Scholar
  6. 6.
    Delves PJ, Roitt IM (2000) The immune system. Second of two parts. N Engl J Med 343: 108–117PubMedCrossRefGoogle Scholar
  7. 7.
    Gilboa E (2004) The promise of cancer vaccines. Nat Rev Cancer 4: 401–411PubMedCrossRefGoogle Scholar
  8. 8.
    Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM, Anichini A (2002) Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 94: 805–818PubMedGoogle Scholar
  9. 9.
    Jager E, Jager D, Knuth A (2002) Clinical cancer vaccine trials. Curr Opin Immunol 14: 178–182PubMedCrossRefGoogle Scholar
  10. 10.
    Cormier JN, Salgaller ML, Prevette T, Barracchini KC, Rivoltini L, Restifo NP, Rosenberg SA, Marincola FM (1997) Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A. Cancer J Sci Am 3: 37–44PubMedGoogle Scholar
  11. 11.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Sznol M, Schwarz SL, Spiess PJ et al. (1999) Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J Immunol 163: 1690–1695PubMedGoogle Scholar
  12. 12.
    Jager E, Ringhoffer M, Dienes HP, Arand M, Karbach J, Jager D, Ilsemann C, Hagedorn M, Oesch F, Knuth A (1996) Granulocyte-macrophage-colony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo. Int J Cancer 67: 54–62PubMedCrossRefGoogle Scholar
  13. 13.
    Slingluff CL Jr, Petroni GR, Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Hibbitts S, Teates D et al. (2003) Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 21: 4016–4026PubMedCrossRefGoogle Scholar
  14. 14.
    Gjertsen MK, Buanes T, Rosseland AR, Bakka A, Gladhaug I, Soreide O, Eriksen JA, Moller M, Baksaas I, Lothe RA et al. (2001) Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma. Int J Cancer 92: 441–450PubMedCrossRefGoogle Scholar
  15. 15.
    Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K (2002) Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20: 2624–2632PubMedCrossRefGoogle Scholar
  16. 16.
    Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners CP (1989) Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 57: 327–334PubMedCrossRefGoogle Scholar
  17. 17.
    Samanci A, Yi Q, Fagerberg J, Strigard K, Smith G, Ruden U, Wahren B, Mellstedt H (1998) Pharmacological administration of granulocyte/macrophage-colony-stimulating factor is of significant importance for the induction of a strong humoral and cellular response in patients immunized with recombinant carcinoembryonic antigen. Cancer Immunol Immunother 47: 131–142PubMedCrossRefGoogle Scholar
  18. 18.
    Arlen P, Tsang KY, Marshall JL, Chen A, Steinberg SM, Poole D, Hand PH, Schlom J, Hamilton JM (2000) The use of a rapid ELISPOT assay to analyze peptide-specific immune responses in carcinoma patients to peptide versus recombinant poxvirus vaccines. Cancer Immunol Immunother 49: 517–529PubMedCrossRefGoogle Scholar
  19. 19.
    Jager E, Ringhoffer M, Altmannsberger M, Arand M, Karbach J, Jager D, Oesch F, Knuth A (1997) Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 71: 142–147PubMedCrossRefGoogle Scholar
  20. 20.
    Pervin S, Chakraborty M, Bhattacharya-Chatterjee M, Zeytin H, Foon KA, Chatterjee SK (1997) Induction of antitumor immunity by an anti-idiotype antibody mimicking carcinoembryonic antigen. Cancer Res 57: 728–734PubMedGoogle Scholar
  21. 21.
    Foon KA, Chakraborty M, John WJ, Sherratt A, Kohler H, and Bhattacharya-Chatterjee M (1995) Immune response to the carcinoembryonic antigen in patients treated with an anti-idiotype antibody vaccine. J Clin Invest 96: 334–342PubMedGoogle Scholar
  22. 22.
    Foon KA, John WJ, Chakraborty M, Das R, Teitelbaum A, Garrison J, Kashala O, Chatterjee SK, Bhattacharya-Chatterjee M (1999) Clinical and immune responses in resected colon cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. J Clin Oncol 17: 2889–2895PubMedGoogle Scholar
  23. 23.
    Schlom J, Tsang KY, Kantor JA, Abrams SI, Zaremba S, Greiner J, Hodge JW (1999) Strategies in the development of recombinant vaccines for colon cancer. Semin Oncol 26: 672–682PubMedGoogle Scholar
  24. 24.
    Conry RM, Khazaeli MB, Saleh MN, Allen KO, Barlow DL, Moore SE, Craig D, Arani RB, Schlom J, LoBuglio AF (1999) Phase I trial of a recombinant vaccinia virus encoding carcinoembryonic antigen in metastatic adenocarcinoma: comparison of intradermal versus subcutaneous administration. Clin Cancer Res 5: 2330–2337PubMedGoogle Scholar
  25. 25.
    Marshall JL, Hawkins MJ, Tsang KY, Richmond E, Pedicano JE, Zhu MZ, Schlom J (1999) Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J Clin Oncol 17: 332–337PubMedGoogle Scholar
  26. 26.
    Marshall JL, Hoyer RJ, Toomey MA, Faraguna K, Chang P, Richmond E, Pedicano JE, Gehan E, Peck RA, Arlen P et al. (2000) Phase I study in advanced cancer patients of a diversified primeand-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 18: 3964–3973PubMedGoogle Scholar
  27. 27.
    Horig H, Lee DS, Conkright W, Divito J, Hasson H, LaMare M, Rivera A, Park D, Tine J, Guito K et al. (2000) Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol Immunother 49: 504–514PubMedCrossRefGoogle Scholar
  28. 28.
    Von Mehren M, Arlen P, Tsang KY, Rogatko A, Meropol N, Cooper HS, Davey M, McLaughlin S, Schlom J, Weiner LM (2000) Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas. Clin Cancer Res 6: 2219–2228Google Scholar
  29. 29.
    Marshall J (2003) Carcinoembryonic antigen-based vaccines. Semin Oncol 30(Suppl 8): 30–36PubMedCrossRefGoogle Scholar
  30. 30.
    Hanna MG Jr, Brandhorst JS, Peters LC (1979) Active specific immunotherapy of residual micrometastasis: an evaluation of sources, doses and ratios of BCG with tumor cells. Cancer Immunother 7: 165–173Google Scholar
  31. 31.
    Hoover HC Jr, Brandhorst JS, Peters LC, Surdyke MG, Takeshita Y, Madariaga J, Muenz LR, Hanna MG Jr, (1993) Adjuvant active specific immunotherapy for human colorectal cancer: 6.5-year median follow-up of a phase III prospectively randomized trial. J Clin Oncol 11: 390–399PubMedGoogle Scholar
  32. 32.
    Harris JE, Ryan L, Hoover HC Jr, Stuart RK, Oken MM, Benson AB III, Mansour E, Haller DG, Manola J, Hanna MG Jr, (2000) Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group Study E5283. J Clin Oncol 18: 148–157PubMedGoogle Scholar
  33. 33.
    Baars A, Claessen AM, van den Eertwegh AJ, Gall HE, Stam AG, Meijer S, Giaccone G, Meijer CJ, Scheper RJ, Wagstaff J et al. (2000) Skin tests predict survival after autologous tumor cell vaccination in metastatic melanoma: experience in 81 patients. Ann Oncol 11: 965–970PubMedCrossRefGoogle Scholar
  34. 34.
    Vermorken JB, Claessen AM, van Tinteren H, Gall HE, Ezinga R, Meijer S, Scheper RJ, Meijer CJ, Bloemena E, Ransom JH et al. (1999) Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 353: 345–350PubMedCrossRefGoogle Scholar
  35. 35.
    Hanna MG, Hoover HC, Vermorken JB, Harris JE, Pinedo HM (2001) Adjuvant active specific immunotherapy of stage II and stage III colon cancer with an autologous tumor cell vaccine: first randomized phase III trials show promise. Vaccine 19: 2576–2582PubMedCrossRefGoogle Scholar
  36. 36.
    Hanna MG Jr, Key ME (1982) Immunotherapy of metastases enhances subsequent chemotherapy. Science 217: 367–369PubMedCrossRefGoogle Scholar
  37. 37.
    Baars A, Claessen AME, Gall HE, Zegers I, Scheper RJ, Giaccone G, Meijer S, Meijer CJLM, Wagstaff J, Vermorken JB et al. (2002) A phase II study of Active Specific Immunotherapy in a combination with 5-FU/LV for the adjuvant treatment of stage III colon carcinoma. Br J Cancer 86: 1230–1234PubMedCrossRefGoogle Scholar
  38. 38.
    Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting antitumor immunity. Proc Natl Acad Sci USA 90: 3539–3543PubMedCrossRefGoogle Scholar
  39. 39.
    Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC, Hodi FS, Liebster L, Lam P, Mentzer S et al. (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 95: 13141–13146PubMedCrossRefGoogle Scholar
  40. 40.
    Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S, Tanabe K, Duda R, Mentzer S, Jaklitsch M et al. (2003) Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 21: 343–3350CrossRefGoogle Scholar
  41. 41.
    Castelli C, Rivoltini L, Rini F, Belli F, Testori A, Maio M, Mazzaferro V, Coppa J, Srivastava PK, Parmiani G (2004) Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53: 227–233PubMedCrossRefGoogle Scholar
  42. 42.
    Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2: 185–194PubMedCrossRefGoogle Scholar
  43. 43.
    Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR, Gallino G, Piris A, Cattelan A, Lazzari I et al. (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4169–4180PubMedCrossRefGoogle Scholar
  44. 44.
    Rivoltini L, Castelli C, Carabba M, Mazzaferro V, Pilla L, Huber V, Coppa J, Gallino F, Scheibenbogen C, Squarcina P et al. (2003) Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma-and colon carcinoma-specific T cells. J Immunol 171: 3467–3474PubMedGoogle Scholar
  45. 45.
    Mazzaferro V, Coppa J, Carabba M, Rivoltini L, Schiavo M, Regalia E, Mariani L, Camerini T, Marchiano A, Andreola S et al. (2003) Vaccination with autologous tumor derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9: 3235–3245PubMedGoogle Scholar
  46. 46.
    Mitchell MS, Kan-Mitchell J, Kempf RA, Harel W, Shau H, Lind S (1988) Active specific immunotherapy for melanoma: Phase I trial of allogeneic lysates and a novel adjuvant. Cancer Res 48: 5883–5893PubMedGoogle Scholar
  47. 47.
    Mitchell MS, Harel W, Kempf RA, Hu E, Kan-Mitchell L, Boswell WD, Dean G, Stevenson L (1990) Active specific immunotherapy for melanoma. J Clin Oncol 8: 856–869PubMedGoogle Scholar
  48. 48.
    Mitchell MS, Jakowatz J, Harel W, Dean G, Stevenson L, Boswell WD, Groshen S (1994) Increased effectiveness of interferon a-2b following active specific immunotherapy for melanoma. J Clin Oncol 12: 402–411PubMedGoogle Scholar
  49. 49.
    Vaishampayan U, Abrams J, Darrah D, Jones V, Mitchell MS (2002) Active immunotherapy of metastatic melanoma with allogeneic melanoma lysates and interferon alpha. Clin Cancer Res 8: 3696–3701PubMedGoogle Scholar
  50. 50.
    Morton DL, Barth A (1996) Vaccine therapy for malignant melanoma. CA Cancer J Clin 46: 225–244PubMedCrossRefGoogle Scholar
  51. 51.
    Morton DL, Hsueh EC, Essner R, Foshag LJ, O’Day SJ, Bilchik A, Gupta RK, Hoon DS, Ravindranath M, Nizze JA et al. (2002) Prolonged survival of patients receiving active immunotherapy with Canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann Surg 236: 438–448PubMedCrossRefGoogle Scholar
  52. 52.
    Hsueh EC, Gupta RK, Gammon G, Foshag LJ, Essner R, Qi K, Morton DL (2004) Correlation of specific immune responses with survival in AJCC stage IV melanoma patients receiving polyvalent melanoma cell vaccine. ASCO 2004, abstract 1675Google Scholar
  53. 53.
    Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2: 52–58PubMedCrossRefGoogle Scholar
  54. 54.
    Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, Taidi B, Rajapaksa R, Caspar CB, Okada CY et al. (2002) Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99: 1517–1526PubMedCrossRefGoogle Scholar
  55. 55.
    Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat Med 4: 328–332PubMedCrossRefGoogle Scholar
  56. 56.
    Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B, Fritsch PO, Romani N et al. (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195: 1279–1288PubMedCrossRefGoogle Scholar
  57. 57.
    Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P et al. (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190: 1669–1678PubMedCrossRefGoogle Scholar
  58. 58.
    Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N et al. (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61: 6451–6458PubMedGoogle Scholar
  59. 59.
    Höltl L, Rieser C, Papesh C, Ramoner R, Bartsch G, Thurnher M (1998) CD83+ blood dendritic cells as a vaccine for immunotherapy of metastatic renal-cell cancer. Lancet 352: 1358PubMedCrossRefGoogle Scholar
  60. 60.
    Höltl L, Zelle-Rieser C, Gander H, Papesh C, Ramoner R, Bartsch G, Rogatsch H, Barsoum AL, Coggin JH Jr, Thurnher M (2002) Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 8: 3369–3376PubMedGoogle Scholar
  61. 61.
    Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, Valone FH (2000) Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 18: 3894–3903PubMedGoogle Scholar
  62. 62.
    Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109: 409–417PubMedCrossRefGoogle Scholar
  63. 63.
    Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3: 541–547PubMedCrossRefGoogle Scholar
  64. 64.
    Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1: 405–413PubMedCrossRefGoogle Scholar
  65. 65.
    Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271: 1734–1736PubMedCrossRefGoogle Scholar
  66. 66.
    Yang YF, Zou JP, Mu J, Wijesuriya R, Ono S, Walunas T, Bluestone J, Fujiwara H, Hamaoka T (1997) Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res 57: 4036–4041PubMedGoogle Scholar
  67. 67.
    Van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190: 355–366PubMedCrossRefGoogle Scholar
  68. 68.
    Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM, Burg MB, Allison JP (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 60: 2444–2448PubMedGoogle Scholar
  69. 69.
    Hurwitz AA, Yu TF, Leach DR, Allison JP (1998) CTLA-4 blockade synergizes with tumorderived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci USA 95: 10067–10071PubMedCrossRefGoogle Scholar
  70. 70.
    Mokyr MB, Kalinichenko T, Gorelik L, Bluestone JA (1998) Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res 58: 5301–5304PubMedGoogle Scholar
  71. 71.
    Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ et al. (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100: 8372–8377PubMedCrossRefGoogle Scholar
  72. 72.
    Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E (2003) Multivalent RNA Aptamers That Inhibit CTLA-4 and Enhance Tumor Immunity. Cancer Res 63: 7483–7489PubMedGoogle Scholar
  73. 73.
    Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2: 398–400Google Scholar
  74. 74.
    Jones E, Dahm-Vicker M, Simon AK, Green A, Powrie F, Cerundolo V, Gallimore A (2002) Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun 2:1PubMedGoogle Scholar
  75. 75.
    Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS et al. (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169: 2756–2761PubMedGoogle Scholar
  76. 76.
    Vieweg J, Su Z, Dannull J (2004) Enhancement of antitumor immunity following depletion of CD4+CD25+ regulatory T cells. ASCO 2004, abstract 2506 VaccGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2006

Authors and Affiliations

  • Alfonsus J. M. van den Eertwegh
    • 1
  1. 1.Division of Immunotherapy, Department of Medical OncologyVrije Universiteit Medical CenterHV AmsterdamThe Netherlands

Personalised recommendations