Existence of Solutions for a Class of Problems in IRN Involving the p(x)-Laplacian

  • Claudianor O. Alves
  • Marco A.S. Souto

Abstract

In this work, we study the existence of solutions for a class of problems involving p(x)-Laplacian operator in IRN. Using variational techniques we show some results of existence for a class of problems involving critical and subcritical growth.

Keywords

Variational methods Sobolev embedding quasilinear operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.O. Alves, Existência de solução positiva de equações elípticas não-lineraes variacionais em IR N, Ph.D. Thesis, Universidade de Brasilia, Brasilia, 1996.Google Scholar
  2. [2]
    C.O. Alves, J.M. do Ó and O.H. Miyagaki, On pertubations of a class of a periodic m-Laplacian equation with critical growth, Nonlinear Analysis 45 (2001), 849–863.MATHCrossRefGoogle Scholar
  3. [3]
    D. C. de Morais Filho, J.M. do Ó and M.A.S. Souto, A Compactness Embedding Lemma, a Principle of Symetric Criticality and Applications to Elliptic Problems, Publicado no Proyecciones — Revista Matemtica 19, no. 1 (2000), 1–17.Google Scholar
  4. [4]
    X.L. Fan, J.S. Shen and D. Zhao, Sobolev embedding theorems for spaces W k,p(x)(Ω), J. Math. Anal. Appl. 262 (2001), 749–760.MATHCrossRefGoogle Scholar
  5. [5]
    X.L. Fan, Y.Z. Zhao and D. Zhao, Compact embedding theorems with symmetry of Strauss-Lions type for the space W 1,p(x)(Ω), J. Math. Anal. Appl. 255 (2001), 333–348MATHCrossRefGoogle Scholar
  6. [6]
    X.L. Fan and D. Zhao, On the spaces L p(x)(Ω) and W m,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), 424–446MATHCrossRefGoogle Scholar
  7. [7]
    X.L. Fan and Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Analysis 52 (2003), 1843–1852.MATHCrossRefGoogle Scholar
  8. [8]
    G. Talenti, Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110 (1976), 353–372.MATHCrossRefGoogle Scholar
  9. [9]
    M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhauser Boston, 1996.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Claudianor O. Alves
    • 1
  • Marco A.S. Souto
    • 1
  1. 1.Departamento de Matemática e EstatísticaUniversidade Federal de Campina GrandeCampina Grande — PbBrazil

Personalised recommendations