Advertisement

Existence of Solutions for a Class of Problems in IRN Involving the p(x)-Laplacian

  • Claudianor O. Alves
  • Marco A.S. Souto
Chapter
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 66)

Abstract

In this work, we study the existence of solutions for a class of problems involving p(x)-Laplacian operator in IR N. Using variational techniques we show some results of existence for a class of problems involving critical and subcritical growth.

Keywords

Variational methods Sobolev embedding quasilinear operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.O. Alves, Existência de solução positiva de equações elípticas não-lineraes variacionais em IR N, Ph.D. Thesis, Universidade de Brasilia, Brasilia, 1996.Google Scholar
  2. [2]
    C.O. Alves, J.M. do Ó and O.H. Miyagaki, On pertubations of a class of a periodic m-Laplacian equation with critical growth, Nonlinear Analysis 45 (2001), 849–863.zbMATHCrossRefGoogle Scholar
  3. [3]
    D. C. de Morais Filho, J.M. do Ó and M.A.S. Souto, A Compactness Embedding Lemma, a Principle of Symetric Criticality and Applications to Elliptic Problems, Publicado no Proyecciones — Revista Matemtica 19, no. 1 (2000), 1–17.Google Scholar
  4. [4]
    X.L. Fan, J.S. Shen and D. Zhao, Sobolev embedding theorems for spaces W k,p(x)(Ω), J. Math. Anal. Appl. 262 (2001), 749–760.zbMATHCrossRefGoogle Scholar
  5. [5]
    X.L. Fan, Y.Z. Zhao and D. Zhao, Compact embedding theorems with symmetry of Strauss-Lions type for the space W 1,p(x)(Ω), J. Math. Anal. Appl. 255 (2001), 333–348zbMATHCrossRefGoogle Scholar
  6. [6]
    X.L. Fan and D. Zhao, On the spaces L p(x)(Ω) and W m,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), 424–446zbMATHCrossRefGoogle Scholar
  7. [7]
    X.L. Fan and Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Analysis 52 (2003), 1843–1852.zbMATHCrossRefGoogle Scholar
  8. [8]
    G. Talenti, Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110 (1976), 353–372.zbMATHCrossRefGoogle Scholar
  9. [9]
    M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhauser Boston, 1996.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Claudianor O. Alves
    • 1
  • Marco A.S. Souto
    • 1
  1. 1.Departamento de Matemática e EstatísticaUniversidade Federal de Campina GrandeCampina Grande — PbBrazil

Personalised recommendations