Sturm’s 1836 Oscillation Results Evolution of the Theory

  • Don Hinton

Abstract

We examine how Sturm’s oscillation theorems on comparison, separation, and indexing the number of zeros of eigenfunctions have evolved. It was Bôcher who first put the proofs on a rigorous basis, and major tools of analysis where introduced by Picone, Prüfer, Morse, Reid, and others. Some basic oscillation and disconjugacy results are given for the second-order case. We show how the definitions of oscillation and disconjugacy have more than one interpretation for higher-order equations and systems, but it is the definitions from the calculus of variations that provide the most fruitful concepts; they also have application to the spectral theory of differential equations. The comparison and separation theorems are given for systems, and it is shown how they apply to scalar equations to give a natural extension of Sturm’s second-order case. Finally we return to the second-order case to show how the indexing of zeros of eigenfunctions changes when there is a parameter in the boundary condition or if the weight function changes sign.

Keywords

separation comparison disconjugate oscillatory conjugate point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Agarwal, S. Grace and D. O’Regan, Oscillation theory for difference and functional differential equations, Kluwer, Dordrecht, 2000.Google Scholar
  2. [2]
    _____, Oscillation theory for second-order dynamic equations, Taylor and Francis, London, 2003.Google Scholar
  3. [3]
    C. Ahlbrandt, Disconjugacy criteria for self-adjoint differential systems, J. Differential Eqs. 6 (1969), 271–295.Google Scholar
  4. [4]
    _____, Equivalent boundary value problems for self-adjoint differential systems, J. Differential Eqs. 9 (1971), 420–435.Google Scholar
  5. [5]
    C. Ahlbrandt, D. Hinton and R. Lewis, The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory, J. Math. Anal. Appl. 81 (1981), 234–277.Google Scholar
  6. [6]
    C. Ahlbrandt and A. Peterson, Discrete Hamiltionian Systems, Kluwer Academic, Dordrecht, 1996.Google Scholar
  7. [7]
    M. Ashbaugh, R. Brown and D. Hinton, Interpolation inequalities and nonoscillatory differential equations, p. 243–255, International Series of Numerical Mathematics 103, Birkhäiuser, Basel, 1992.Google Scholar
  8. [8]
    F. Atkinson, Discrete and continuous boundary problems, Academic Press, New York, 1964.Google Scholar
  9. [9]
    P. Bailey, N. Everitt and A. Zettl, The SLEIGN2 Sturm-Liouville code, ACM Trans. Math. Software 27 (2001), 143–192.Google Scholar
  10. [10]
    J.H. Barrett, Oscillation theory of ordinary linear differential equations, Adv. in Math. 3 (1969), 415–509.Google Scholar
  11. [11]
    P.R. Beesack, Nonoscillation and disconjugacy in the complex domain, Trans. Amer. Math. Soc. 81 (1956), 211–242.Google Scholar
  12. [12]
    P. Binding, A hierarchy of Sturm-Liouville problems, Math. Methods in the Appl. Sci. 26 (2003), 349–357.Google Scholar
  13. [13]
    P. Binding and P. Browne, Oscillation theory for indefinite Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Proc. Royal Soc. Edinburgh 127A (1997), 1123–1136.Google Scholar
  14. [14]
    P. Binding, P. Browne and K. Seddighi, Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proc. Edinburgh Math. Soc. 37 (1993), 57–72.Google Scholar
  15. [15]
    P. Binding and H. Volkmer, Oscillation theory for Sturm-Liouville problems with indefinite coefficients, Proc. Royal Soc. Edinburgh 131A (2001), 989–1002.Google Scholar
  16. [16]
    G. Birkhoff, Existence and oscillation theorem for a certain boundary value problem, Trans. Amer. Math. Soc. 10 (1909), 259–270.MathSciNetGoogle Scholar
  17. [17]
    M. Bôcher, The theorems of oscillation of Sturm and Klein, Bull. Amer. Math. Soc. 4 (1897–1898), 295–313, 365–376.Google Scholar
  18. [18]
    _____, Leçons sur les méthodes de Sturm dans la théorie des équations différentielles linéaires, et leurs développements modernes, Gauthier-Villars, Paris, 1917.Google Scholar
  19. [19]
    O. Bolza, Lectures on the Calculus of Variations, Dover, New York, 1961.Google Scholar
  20. [20]
    M. Brown and M. Eastham, The Hurwitz theorem for Bessel functions and anti-bound states in spectral theory, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003), 2431–2448.Google Scholar
  21. [21]
    R. Brown, S. Clark and D. Hinton, Some function space inequalities and their application to oscillation and stability problems in differential equations, pp. 19–41, Analysis and Applications, Narosa, New Delhi, 2002.Google Scholar
  22. [22]
    E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.Google Scholar
  23. [23]
    W.J. Coles, A simple proof of a well-known oscillation theorem, Proc. Amer. Math. Soc. 19 (1968), 507.Google Scholar
  24. [24]
    W.A. Coppel, Disconjugacy, Lecture Notes in Mathematics 220, Springer, Berlin, 1971.Google Scholar
  25. [25]
    A. Dixon, On the series of Sturm and Liouville as derived from a pair of fundamental integral equations instead of a differential equation, Phil. Trans. Royal Soc. London Ser. A 211 (1912), 411–432.Google Scholar
  26. [26]
    O. Došlý, Constants in the oscillation theory of higher-order Sturm-Liouville differential equations, Elect. J. Diff. Eqs. 2002 (2002), 1–12.Google Scholar
  27. [27]
    M. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edinburgh, 1973.Google Scholar
  28. [28]
    _____, Antibound states and exponentially decaying Sturm Liouville potentials, J. London Math. Soc. (2) 65 (2002), 624–638.Google Scholar
  29. [29]
    U. Elias, Oscillation Theory of Two-Term Differential Equations, Kluwer, Dordrecht, 1997.Google Scholar
  30. [30]
    L. Erbe, Q. Kong and S. Ruan, Kamenev type theorems for second-order matrix differential systems, Proc. Amer. Math. Soc. 117 (1993), 957–962.Google Scholar
  31. [31]
    L. Erbe, Q. Kong and B. Zhang, Oscillation theory for functional differential equations, Monographs in Pure and Applied Mathematics 190, Marcel Dekker, New York, 1995.Google Scholar
  32. [32]
    N. Everitt, M. Kwong and A. Zettl, Oscillation of eigenfunctions of weighted regular Sturm-Liouville problems, J. London Math. Soc. (2) 27 (1983), 106–120.Google Scholar
  33. [33]
    W.B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), 341–352.MathSciNetGoogle Scholar
  34. [34]
    C. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Royal Soc. Edinburgh 77A (1977), 293–308.Google Scholar
  35. [35]
    F. Gesztesy, B. Simon and G. Teschl, Zeros of the Wronskian and renormalized oscillation theory, Amer. J. Math. 118 (1996), 571–594.Google Scholar
  36. [36]
    F. Gesztesy and M. Ünal, Perturbative oscillation criteria and Hardy-type inequalities, Math. Nachr. 189 (1998), 121–144.Google Scholar
  37. [37]
    I.M. Glazman, Direct Methods for the Qualitative Spectral Analysis of Singular Differential Operators, Israel Program for Scientific Translations, Jerusalem, 1965.Google Scholar
  38. [38]
    M. Greguš, Third-Order Linear Differential Equations, Reidel, Dordrecht, 1987.Google Scholar
  39. [39]
    I. Gyori and G. Ladas, Oscillation theory of delay differential equations with applications, Oxford Press, New York, 1991.Google Scholar
  40. [40]
    G. Halvorsen and A. Mingarelli, Non-oscillation Domains of Differential Equations with Two Parameters, Lecture Notes in Mathematics 1338, Springer, Berlin, 1988.Google Scholar
  41. [41]
    M. Hanan, Oscillation criteria for third-order differential equations, Pacific J. Math. 11 (1961), 919–944.Google Scholar
  42. [42]
    B. Harrington, Qualitative and Quantitative Properties of Eigenvalue Problems with Eigenparameter in the Boundary Conditions, M.S. thesis, U. Tennessee, 1988.Google Scholar
  43. [43]
    P. Hartman, Differential equations with non-oscillatory eigenfunctions, Duke Math. J. 15 (1948), 697–709.Google Scholar
  44. [44]
    _____, Ordinary Differential Equations, Wiley, New York, 1964.Google Scholar
  45. [45]
    _____, Comparison theorems for self-adjoint second-order systems and uniqueness of eigenvalues of scalar boundary value problems, pp. 1–22, Contributions to analysis and geometry, Johns Hopkins Univ. Press, Baltimore, 1980.Google Scholar
  46. [46]
    P. Hartman and A. Wintner, On non-oscillatory linear differential equations with monotone coefficients, Amer. J. Math. 76 (1954), 207–219.Google Scholar
  47. [47]
    O. Haupt, Untersuchungen über Oszillationstheoreme, Teubner, Leipzig, 1911.Google Scholar
  48. [48]
    S.W. Hawking and R. Penrose, The singularities of gravity collapse and cosmology, Proc. Roy. Soc. London Ser. A 314 (1970), 529–548.Google Scholar
  49. [49]
    E. Hille, Oscillation theorems in the complex domain, Trans. Amer. Math. Soc. 23 (1922), 350–385.MathSciNetGoogle Scholar
  50. [50]
    _____, Nonoscillation Theorems, Trans. Amer. Math. Soc. 64 (1948), 234–252.Google Scholar
  51. [51]
    _____, Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, 1969.Google Scholar
  52. [52]
    A. Hurwitz Über die Nullstellen der Bessel’schen Funktion, Math. Annalen 33 (1889), 246–266.Google Scholar
  53. [53]
    E. Ince, Ordinary Differential Equations, Dover, New York, 1956.Google Scholar
  54. [54]
    C.G.J. Jacobi, Zur Theorie der Variations-Rechnung und der Differential-Gleichungen, J. Reine Angew. Math. 17 (1837), 68–82.Google Scholar
  55. [55]
    I. Kamenev, Integral criterion for oscillations of linear differential equations of second-order, Mat. Zametki 23 (1978), 249–251.Google Scholar
  56. [56]
    E. Kamke, A new proof of Sturm’s comparison theorem, Amer. Math. Monthly 46 (1939), 417–421.Google Scholar
  57. [57]
    M. Klaus and J. Shaw, On the eigenvalues of Zakharov-Shabat systems, SIAM J. Math. Analysis 34 (2003), 759–773.Google Scholar
  58. [58]
    F. Klein, Über Körper, welche von confocalen Flächen zweiten Grades begränzt sind, Math. Ann. 18 (1881), 410–427. In: Felix Klein Gesammelte Abhandlungen, vol II, p. 521–539, Springer, Berlin, 1922.Google Scholar
  59. [59]
    A. Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann. 42 (1893), 409–435.Google Scholar
  60. [60]
    Q. Kong, H. Wu and A. Zettl, Left-definite Sturm-Liouville problems, J. Differential Eqs. 177 (2001), 1–26.Google Scholar
  61. [61]
    W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Akademie Verlag, Berlin, 1995.Google Scholar
  62. [62]
    K. Kreith, Oscillation Theory, Lecture Notes in Mathematics 324, Springer, Berlin, 1973.Google Scholar
  63. [63]
    _____, PDE generalization of the Sturm comparison theorem, Mem. Amer. Math. Soc. 48 (1984), 31–45.Google Scholar
  64. [64]
    W. Leighton, On the detection of the oscillation of solutions of a second-order linear differential equation, Duke Math. J. 17 (1950), 57–62.Google Scholar
  65. [65]
    _____, Comparison theorems for linear differential equations of second-order, Proc. Amer. Math. Soc. 13 (1962), 603–610.Google Scholar
  66. [66]
    W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325–377.Google Scholar
  67. [67]
    A.J. Levin,A comparison principle for second-order differential equations, Soviet Math. Dokl. 1 (1960), 1313–1316.Google Scholar
  68. [68]
    _____, Some properties bearing on the oscillation of linear differential equations, Soviet Math. Dokl. 4 (1963), 121–124.Google Scholar
  69. [69]
    _____, Distribution of the zeros of a linear differential equation, Soviet Math. Dokl. 5 (1964), 818–822.Google Scholar
  70. [70]
    R. Lewis, The discreteness of the spectrum of self-adjoint, even order, one-term, differential operators, Proc. Amer. Math Soc. 42 (1974), 480–482.Google Scholar
  71. [71]
    A. Liapunov, Problème Général de la Stabilité du Mouvement, (French translation of a Russian paper dated 1893), Ann. Fac. Sci. Univ. Toulouse 2 (1907), 27–247; reprinted as Ann. Math. Studies 17, Princeton, 1949.Google Scholar
  72. [72]
    H. Linden, Leighton’s bounds for Sturm-Liouville eigenvalues with eigenparameter in the boundary conditions, J. Math. Anal. Appl. 156 (1991), 444–456.Google Scholar
  73. [73]
    D. London, On the zeros of w″(z) + p(z)w(z) = 0, Pacific J. Math. 12 (1962), 979–991.Google Scholar
  74. [74]
    J. Lützen, Joseph Liouville 1809–1882: Master of Pure and Applied Mathematics, Springer, Berlin, 1990.Google Scholar
  75. [75]
    F. Meng and A. Mingarelli, Oscillation of linear Hamiltonian systems, Proc. Amer. Math. Soc. 131 (2003), 897–904.Google Scholar
  76. [76]
    A. Mingarelli, A survey of the regular weighted Sturm-Liouville problem — the non-definite case, in International Workshop on Applied Differential Equations, ed. S. Xiao and F. Pu, p. 109–137, World Scientific, Singapore, 1986.Google Scholar
  77. [77]
    M. Möller, On the unboundedness below of the Sturm-Liouville operator, Proc. Roy. Soc. Edinburgh 129A (1999), 1011–1015.Google Scholar
  78. [78]
    M. Morse, A generalization of Sturm separation and comparison theorems, Math. Ann. 103 (1930), 52–69.Google Scholar
  79. [79]
    _____, Variational Analysis: Critical Extremals and Sturmian Extensions, Wiley-Interscience, New York, 1973.Google Scholar
  80. [80]
    E. Müller-Pfeiffer, Spectral Theory of Ordinary Differential Equations, Ellis Horwood, Chichester, 1981.Google Scholar
  81. [81]
    Z. Nehari, On the zeros of solutions of second-order linear differential equations, Amer. J. Math. 76 (1954), 689–697.Google Scholar
  82. [82]
    _____, Oscillation criteria for second-order linear differential equations, Trans. Amer. Math. Soc. 85 (1957), 428–445.Google Scholar
  83. [83]
    M. Picone, Sui valori eccezionali di un parametro da cui dipende un’equazione differenziale lineare ordinaria del second’ordine, Ann. Scuola Norm. Pisa 11 (1909), 1–141.Google Scholar
  84. [84]
    H. Prüfer, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen, Math. Ann. 95 (1926), 499–518.Google Scholar
  85. [85]
    J. Pryce, Numerical Solutions of Sturm-Liouville Problems, Oxford University Press, Oxford, 1993.Google Scholar
  86. [86]
    W.T. Reid, Ordinary Differential Equations, Wiley, New York, 1971.Google Scholar
  87. [87]
    _____, Riccati Differential Equations, Academic Press, New York, 1972.Google Scholar
  88. [88]
    _____, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences 31, Springer, Berlin, 1980.Google Scholar
  89. [89]
    R. Richardson, Theorems of oscillation for two linear differential equations of the second order with two parameters, Trans. Amer. Math. Soc. 13 (1912), 22–34.MathSciNetGoogle Scholar
  90. [90]
    _____, Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order, Amer. J. Math. 40 (1918), 283–316.Google Scholar
  91. [91]
    B. Simon, Resonances in one dimension and Fredholm determinants, J. Funct. Anal. 178 (2000), 396–420.Google Scholar
  92. [92]
    R. Stafford and J. Heidel, A new comparison theorem for scalar Riccati equations, Bull. Amer. Math. Soc. 80 (1974), 754–757.Google Scholar
  93. [93]
    R. Sternberg, Variational methods and non-oscillation theorems for systems of differential equations, Duke Math. J. 19 (1952), 311–322.Google Scholar
  94. [94]
    C. Sturm, Mémoire sur les Équations différentielles linéaires du second ordre, J. Math. Pures Appl. 1 (1836), 106–186.Google Scholar
  95. [95]
    _____, Mémoire sur une classes d’Équations à différences partielles, J. Math. Pures Appl. 1 (1836), 373–444.Google Scholar
  96. [96]
    C.A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York, 1968.Google Scholar
  97. [97]
    F.J. Tipler, General relativity and conjugate ordinary differential equations, J. Differential Eqs. 30 (1978), 165–174.Google Scholar
  98. [98]
    H. Weber, Die partiellen Differentialgleichungen der mathematischen Physik, Band 2, 5. Auflage, Vieweg, Braunschweig, 1912.Google Scholar
  99. [99]
    J. Weidman, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258, Springer, Berlin, 1987.Google Scholar
  100. [100]
    D. Willett, Classification of second-order linear differential equations with respect to oscillation, Adv. Math. 3 (1969), 594–623.Google Scholar
  101. [101]
    A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115–117.Google Scholar
  102. [102]
    _____, On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368–380.Google Scholar
  103. [103]
    Y. Yakubovich and V. Starzhinskii, Linear Differential Equations with Periodic Coefficients, vol. I, II, Wiley, New York, 1975.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Don Hinton
    • 1
  1. 1.Mathematics DepartmentUniversity of TennesseeKnoxvilleUSA

Personalised recommendations