Advertisement

Coronaviridae: a review of coronaviruses and toroviruses

  • Dave Cavanagh
Chapter
Part of the Birkhäuser Advances in Infectious Diseases BAID book series (BAID)

Keywords

Infectious Bronchitis Virus Mouse Hepatitis Virus Spike Glycoprotein Feline Infectious Peritonitis Virus Avian Infectious Bronchitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Haijema BJ, Volders H, Rottier PJ (2003) Switching species tropism: an effective way to manipulate the feline coronavirus genome. J Virol 77: 4528–4538CrossRefPubMedGoogle Scholar
  2. 2.
    Koetzner CA, Parker MM, Ricard CS, Sturman LS, Masters PS (1992) Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination. J Virol 66: 1841–1848PubMedGoogle Scholar
  3. 3.
    Kuo L, Godeke GJ, Raamsman MJ, Masters PS, Rottier PJ (2000) Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol 74: 1393–1406CrossRefPubMedGoogle Scholar
  4. 4.
    Masters PS (1999) Reverse genetics of the largest RNA viruses. Adv Virus Res 53: 245–264PubMedGoogle Scholar
  5. 5.
    Thiel V, Herold J, Schelle B, Siddell SG (2001) Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82: 1273–1281PubMedGoogle Scholar
  6. 6.
    Almazán F, González JM, Pénzes Z, Izeta A, Calvo E, Plana-Durán J, Enjuanes L (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Nat Acad Sci USA 97: 5516–5521CrossRefPubMedGoogle Scholar
  7. 7.
    Yount B, Curtis KM, Baric RS (2000) Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol 74: 10600–10611CrossRefPubMedGoogle Scholar
  8. 8.
    Yount B, Denison MR, Weiss SR, Baric RS (2002) Systematic Assembly of a Full-Length Infectious cDNA of Mouse Hepatitis Virus Strain A59. J Virol 76: 11065–11078CrossRefPubMedGoogle Scholar
  9. 9.
    Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS (2003) Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 100: 12995–13000CrossRefPubMedGoogle Scholar
  10. 10.
    de Haan CA, Masters PS, Shen X, Weiss S, Rottier PJ (2002) The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 296: 177–189CrossRefPubMedGoogle Scholar
  11. 11.
    Cavanagh D (2004) Coronaviruses and toroviruses. In: AJ Zuckerman JE Banatvala, PD Griffiths, JR Pattison, BD Schoub (eds): Principles and Practice of Clinical Virology, 5th ed., John Wiley & Sons Ltd, Chichester, 379–397Google Scholar
  12. 12.
    Makela MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, Kimpimaki M, Blomqvist S, Hyypia T, Arstila P (1998) Viruses and bacteria in the etiology of the common cold. J Clin Microbiol 36: 539–542PubMedGoogle Scholar
  13. 13.
    Pitkaranta A, Hayden FG (1998) What’s new with common colds? Pathogenesis and diagnosis. Infections Med 15: 50–57Google Scholar
  14. 14.
    Pene F, Merlat A, Vabret A, Rozenberg F, Buzyn A, Dreyfus F, Cariou A, Freymuth F, Lebon P (2003) Coronavirus 229E-related pneumonia in immunocompromised patients. Clin Infect Dis 37: 929–932CrossRefPubMedGoogle Scholar
  15. 15.
    McKean MC, Leech M, Lambert PC, Hewitt C, Myint S, Silverman M (2001) A model of viral wheeze in nonasthmatic adults: symptoms and physiology. Eur Respir J 18: 23–32CrossRefPubMedGoogle Scholar
  16. 16.
    Gagneur A, Legrand MC, Picard B, Baron R, Talbot PJ, de Parscau L, Sizun J (2002) Nosocomial infections due to human coronaviruses in the newborn. Arch Pediatr 9: 61–69PubMedGoogle Scholar
  17. 17.
    Falsey AR, Walsh EE, Hayden FG (2002) Rhinovirus and coronavirus infection-associated hospitalizations among older adults. J Infect Dis 185: 1338–1341PubMedGoogle Scholar
  18. 18.
    Freymuth F, Vabret A, Brouard J, Toutain F, Verdon R, Petitjean J, Gouarin S, Duhamel JF, Guillois B (1999) Detection of viral, Chlamydia pneumoniae and Mycoplasma pneumoniae infections in exacerbations of asthma in children. J Clin Virol 13: 131–139PubMedGoogle Scholar
  19. 19.
    Atmar RL, Guy E, Guntupalli KK, Zimmerman JL, Bandi VD, Baxter BD, Greenberg SB (1998) Respiratory tract viral infections in inner-city asthmatic adults. Arch Intern Med 158: 2453–2459PubMedGoogle Scholar
  20. 20.
    van Benten IJ, KleinJan A, Neijens HJ, Osterhaus AD, Fokkens WJ (2001) Prolonged nasal eosinophilia in allergic patients after common cold. Allergy 56: 949–956PubMedGoogle Scholar
  21. 21.
    Koopmans MP, Goosen ES, Lima AA, McAuliffe IT, Nataro JP, Barrett LJ, Glass RI, Guerrant RL (1997) Association of torovirus with acute and persistent diarrhea in children. Pediatr Infect Dis J 16: 504–507PubMedGoogle Scholar
  22. 22.
    Jamieson FB, Wang EE, Bain C, Good J, Duckmanton L, Petric M (1998) Human torovirus: a new nosocomial gastrointestinal pathogen. J Infect Dis 178: 1263–1269PubMedGoogle Scholar
  23. 23.
    Cavanagh D, Davis PJ (1986) Coronavirus IBV: Removal of spike glycopeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J Gen Virol 67: 1443–1448PubMedGoogle Scholar
  24. 24.
    Stern DF, Burgess L, Sefton BM (1982) Structural analysis of virion proteins of the avian coronavirus infectious bronchitis virus. J Virol 42: 208–219PubMedGoogle Scholar
  25. 25.
    Cavanagh D (1983) Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. J Gen Virol 64: 1787–1791PubMedGoogle Scholar
  26. 26.
    Lewicki DN, Gallagher TM (2002) Quaternary structure of coronavirus spikes in complex with CEACAM cellular receptors. J Biol ChemGoogle Scholar
  27. 27.
    Vennema H, Heijnens L, Zijderveld A, Horzinek MC, Spaan WJM (1990) Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly. J Gen Virol 64: 339–346Google Scholar
  28. 28.
    Delmas B, Laude H (1990) Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol 64: 5367–5375PubMedGoogle Scholar
  29. 29.
    Cavanagh D (1995) The coronavirus surface glycoprotein. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York and London, 73–113Google Scholar
  30. 30.
    Gallagher TM, Buchmeier MJ (2001) Coronavirus spike proteins in viral entry and pathogenesis. Virology 279: 371–374PubMedGoogle Scholar
  31. 31.
    Lai MMC, Cavanagh D (1997) The molecular biology of coronaviruses. Adv Virus Res 48: 1–100CrossRefPubMedGoogle Scholar
  32. 32.
    Cornelissen LA, Wierda CM, van der Meer FJ, Herrewegh AA, Horzinek MC, Egberink HF, de Groot RJ (1997) Hemagglutinin-esterase, a novel structural protein of torovirus. J Virol 71: 5277–5286PubMedGoogle Scholar
  33. 33.
    Duckmanton L, Luan B, Devenish J, Tellier R, Petric M (1997) Characterization of torovirus from human fecal specimens. Virology 239: 158–168PubMedGoogle Scholar
  34. 34.
    Woode GN, Reed DE, Runnels PL, Herrig MA, Hill HT (1982) Studies with an unclassified virus isolated from diarrhoeic calves. Vet Microbiol 7: 221–240PubMedGoogle Scholar
  35. 35.
    Beards GM, Hall C, Green J, Flewett TH, Lamouliatte F, Du Pasquier P (1984) An enveloped virus in stools of children and adults with gastroenteritis that resembles the Breda virus of calves. Lancet 1: 1050–1052PubMedGoogle Scholar
  36. 36.
    Rottier PJM (1995) The coronavirus membrane glycoprotein. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York and London, 115–139Google Scholar
  37. 37.
    Laude H, Masters PS (1995) The coronavirus nucleocapsid protein. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York and London, 141–163Google Scholar
  38. 38.
    Siddell SG (1995) The small-membrane protein. In: Siddell SG (ed): The Coronaviridae. Plenum, Press, New York and London, 181–189Google Scholar
  39. 39.
    Bos EC, Luytjes W, van der Meulen HV, Koerten HK, Spaan WJ (1996) The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology 218: 52–60PubMedGoogle Scholar
  40. 40.
    Vennema H, Godeke GJ, Rossen JWA, Voorhout WF, Horzinek MC, Opstelten DJE, Rottier PJM (1996) Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. Embo J 15: 2020–2028PubMedGoogle Scholar
  41. 41.
    Cavanagh D, Davis PJ, Pappin DJC (1986) Coronavirus IBV glycopolypep-tides: locational studies using proteases and saponin, a membrane permeabiliser. Virus Res 4: 145–156PubMedGoogle Scholar
  42. 42.
    Rottier P, Armstrong J, Meyer DI (1985) Signal recognition particle-dependent insertion of coronavirus E1, an intracellular membrane glycoprotein. J Biol Chem 260: 4648–4652PubMedGoogle Scholar
  43. 43.
    Risco C, Anton IM, Sune C, Pedregosa AM, Martin-Alonso JM, Parra F, Carrascosa JL, Enjuanes L (1995) Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion. J Virol 69: 5269–5277PubMedGoogle Scholar
  44. 44.
    Risco C, Anton IM, Enjuanes L, Carrascosa JL (1996) The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol 70: 4773–4777PubMedGoogle Scholar
  45. 45.
    Escors D, Camafeita E, Ortego J, Laude H, Enjuanes L (2001) Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. J Virol 75: 12228–12240PubMedGoogle Scholar
  46. 46.
    Escors D, Ortego J, Laude H, Enjuanes L (2001) The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol 75: 1312–1324PubMedGoogle Scholar
  47. 47.
    Kuo L, Masters PS (2002) Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. J Virol 76: 4987–4999PubMedGoogle Scholar
  48. 48.
    de Haan CA, Kuo L, Masters PS, Vennema H, Rottier PJ (1998) Coronavirus particle assembly: primary structure requirements of the membrane protein. J Virol 72: 6838–6850PubMedGoogle Scholar
  49. 49.
    de Haan CA, Vennema H, Rottier PJ (2000) Assembly of the coronavirus envelope: homotypic interactions between the M proteins. J Virol 74: 4967–4978PubMedGoogle Scholar
  50. 50.
    Godeke GJ, de Haan CA, Rossen JW, Vennema H, Rottier PJ (2000) Assembly of spikes into coronavirus particles is mediated by the carboxy-terminal domain of the spike protein. J Virol 74: 1566–1571PubMedGoogle Scholar
  51. 51.
    Opstelten DJ, Raamsman MJ, Wolfs K, Horzinek MC, Rottier PJ (1995) Envelope glycoprotein interactions in coronavirus assembly. J Cell Biol 131: 339–349PubMedGoogle Scholar
  52. 52.
    de Haan CA, Smeets M, Vernooij F, Vennema H, Rottier PJ (1999) Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. J Virol 73: 7441–7452PubMedGoogle Scholar
  53. 53.
    de Haan CA, Roestenberg P, de Wit M, de Vries AA, Nilsson T, Vennema H, Rottier PJ (1998) Structural requirements for O-glycosylation of the mouse hepatitis virus membrane protein. J Biol Chem 273: 29905–29914PubMedGoogle Scholar
  54. 54.
    Godet M, L’Haridon R, Vautherot J-F, Laude H (1992) TGEV corona virus ORF-4 encodes a membrane protein that is incorporated into virions. Virology 188: 666–675PubMedGoogle Scholar
  55. 55.
    Corse E, Machamer CE (2000) Infectious bronchitis virus E protein is targeted to the golgi complex and directs release of virus-like particles. J Virol 74: 4319–4326PubMedGoogle Scholar
  56. 56.
    Raamsman MJ, Locker JK, de Hooge A, de Vries AA, Griffiths G, Vennema H, Rottier PJ (2000) Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol 74: 2333–2342PubMedGoogle Scholar
  57. 57.
    Brian DA, Hogue BG, Kienzle TE (1995) The coronavirus hemagglutinin esterase glycoprotein. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York and London, 165–179Google Scholar
  58. 58.
    Vlasak R, Luytjes W, Spaan W, Palese P (1988) Human and bovine coron-aviruses recognise sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci USA 85: 4526–4529PubMedGoogle Scholar
  59. 59.
    Snijder EJ, Horzinek MC (1995) The molecular biology of Toroviruses. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York and London, 219–238Google Scholar
  60. 60.
    Pedersen NC, Ward I, Mengeling WL (1978) Antigenic relationships of feline infectious peritonitis virus to coronavirus of other species. Arch Virol 58: 45–53PubMedGoogle Scholar
  61. 61.
    Gonzalez JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L (2003) A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 148: 2207–2235CrossRefPubMedGoogle Scholar
  62. 62.
    Duarte M, Tobler K, Bridgen A, Rasschaert D, Ackermann M, Laude H (1994) Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF. Virology 198: 466–476PubMedGoogle Scholar
  63. 63.
    Correa I, Jimenez G, Sune C, Bullido MJ, Enjuanes L (1988) Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res 10: 77–93PubMedGoogle Scholar
  64. 64.
    Laude H, Chapsal JM, Gelfi J, Labiau S, Grosclaude J (1986) Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J Gen Virol 67: 119–130PubMedGoogle Scholar
  65. 65.
    Sanchez CM, Jimenez G, Laviada MD, Correa I, Sune C, Bullido M, Gebauer F, Smerdou C, Callebaut P, Escribano JM et al (1990) Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 174: 410–417PubMedGoogle Scholar
  66. 66.
    Smits SL, Lavazza A, Matiz K, Horzinek MC, Koopmans MP, de Groot RJ (2003) Phylogenetic and evolutionary relationships among torovirus field variants: evidence for multiple intertypic recombination events. J Virol 77: 9567–9577PubMedGoogle Scholar
  67. 67.
    de Vries AAF, Horzinek MC, Rottier PJM, de Groot RJ (1997) The genome organisation of the nidovirales: similarities and differences between arteri-, toro-and coronaviruses. Seminars in Virol 8: 33–47Google Scholar
  68. 68.
    Sapats SI, Ashton F, Wright PJ, Ignjatovic J (1996) Novel variation in the N protein of avian infectious bronchitis virus. Virology 226: 412–417PubMedGoogle Scholar
  69. 69.
    Dalton K, Casais R, Shaw K, Stirrups K, Evans S, Britton P, Brown TD, Cavanagh D (2001) cis-Acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging. J Virol 75: 125–133PubMedGoogle Scholar
  70. 70.
    Ortego J, Sola I, Almazan F, Ceriani JE, Riquelme C, Balasch M, Plana J, Enjuanes L (2003) Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology 308: 13–22PubMedGoogle Scholar
  71. 71.
    Sola I, Alonso S, Zuniga S, Balasch M, Plana-Duran J, Enjuanes L (2003) Engineering the transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity. J Virol 77: 4357–4369PubMedGoogle Scholar
  72. 72.
    Ontiveros E, Kuo L, Masters PS, Perlman S (2001) Inactivation of expression of gene 4 of mouse hepatitis virus strain JHM does not affect virulence in the murine CNS. Virology 289: 230–238PubMedGoogle Scholar
  73. 73.
    Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P (2001) Reverse genetics Coronaviridae: a review of coronaviruses and toroviruses system for the avian coronavirus infectious bronchitis virus. J Virol 75: 12359–12369PubMedGoogle Scholar
  74. 74.
    Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331: 991–1004PubMedGoogle Scholar
  75. 75.
    Sola I, Alonso S, Zuniga S, Balasch M, Plana-Duran J, Enjuanes L (2003) Engineering the transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity. J Virol 77: 4357–69PubMedGoogle Scholar
  76. 76.
    Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Weissbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84: 2305–15CrossRefPubMedGoogle Scholar
  77. 77.
    Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ et al (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302: 276–278PubMedGoogle Scholar
  78. 78.
    Popova R, Zhang X (2002) The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection. Virology 294: 222–236PubMedGoogle Scholar
  79. 79.
    Schultze B, Wahn K, Klenk HD, Herrler G (1991) Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology 180: 221–228PubMedGoogle Scholar
  80. 80.
    Cavanagh D (2003) Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol 32: 567–582PubMedGoogle Scholar
  81. 81.
    Tan K, Zelus BD, Meijers R, Liu JH, Bergelson JM, Duke N, Zhang R, Joachimiak A, Holmes KV, Wang JH (2002) Crystal structure of murine sCEACAM1a[1,4]: a coronavirus receptor in the CEA family. Embo J 21: 2076–2086PubMedGoogle Scholar
  82. 82.
    Chen DS, Asanaka M, Chen FS, Shively JE, Lai MM (1997) Human carcinoembryonic antigen and biliary glycoprotein can serve as mouse hepatitis virus receptors. J Virol 71: 1688–1691PubMedGoogle Scholar
  83. 83.
    Rao PV, Kumari S, Gallagher TM (1997) Identification of a contiguous 6-residue determinant in the MHV receptor that controls the level of virion binding to cells. Virology 229: 336–348PubMedGoogle Scholar
  84. 84.
    Miura HS, Nakagaki K, Taguchi F (2004) N-terminal domain of the murine coronavirus receptor CEACAM1 is responsible for fusogenic activation and conformational changes of the spike protein. J Virol 78: 216–223PubMedGoogle Scholar
  85. 85.
    Schickli JH, Zelus BD, Wentworth DE, Sawicki SG, Holmes KV (1997) The murine coronavirus mouse hepatitis virus strain A59 from persistently infected murine cells exhibits an extended host range. J Virol 71: 9499–9507PubMedGoogle Scholar
  86. 86.
    Suzuki H, Taguchi F (1996) Analysis of receptor-binding site of murine coronavirus spike protein. J Virol 70: 2632–2636PubMedGoogle Scholar
  87. 87.
    Gallagher TM (1997) A role for naturally occurring variation of the murine coronavirus spike protein in stabilizing association with the cellular receptor. J Virol 71: 3129–3137PubMedGoogle Scholar
  88. 88.
    Tresnan DB, Levis R, Holmes KV (1996) Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70: 8669–8674PubMedGoogle Scholar
  89. 89.
    Benbacer L, Kut E, Besnardeau L, Laude H, Delmas B (1997) Interspecies aminopeptidase-N chimeras reveal species-specific receptor recognition by canine coronavirus, feline infectious peritonitis virus, and transmissible gastroenteritis virus. J Virol 71: 734–737PubMedGoogle Scholar
  90. 90.
    Kolb AF, Maile J, Heister A, Siddell SG (1996) Characterization of functional domains in the human coronavirus HCV 229E receptor. J Gen Virol 77: 2515–2521PubMedGoogle Scholar
  91. 91.
    Kolb AF, Hegyi A, Siddell SG (1997) Identification of residues critical for the human coronavirus 229E receptor function of human aminopeptidase N. J Gen Virol 78: 2795–2802PubMedGoogle Scholar
  92. 92.
    Wentworth DE, Holmes KV (2001) Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (cd13): influence of n-linked glycosylation. J Virol 75: 9741–9752PubMedGoogle Scholar
  93. 93.
    Lachance C, Arbour N, Cashman NR, Talbot PJ (1998) Involvement of aminopeptidase N (CD13) in infection of human neural cells by human coronavirus 229E. J Virol 72: 6511–6519PubMedGoogle Scholar
  94. 94.
    Hohdatsu T, Izumiya Y, Yokoyama Y, Kida K, Koyama H (1998) Differences in virus receptor for type I and type II feline infectious peritonitis virus. Arch Virol 143: 839–850PubMedGoogle Scholar
  95. 95.
    Herrewegh AAPM, Smeenk I, Horzinek MC, Rottier PJM, deGroot RJ (1998) Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72: 4508–4514PubMedGoogle Scholar
  96. 96.
    Bonavia A, Zelus BD, Wentworth DE, Talbot PJ, Holmes KV (2003) Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J Virol 77: 2530–2538PubMedGoogle Scholar
  97. 97.
    Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450–454PubMedGoogle Scholar
  98. 98.
    Xiao X, Chakrabarti S, Dimitrov AS, Gramatikoff K, Dimitrov DS (2003) The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Comm 312: 1159–1164PubMedGoogle Scholar
  99. 99.
    Schwegmann-Wessels C, Zimmer G, Schröder B, Breves G, Herrler G (2003) Binding of transmissible gastroenteritis coronavirus to brush border membrane sialoglycoproteins. J Virol 77: 11846–11848PubMedGoogle Scholar
  100. 100.
    Schultze B, Herrler G (1992) Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol 73: 901–906PubMedGoogle Scholar
  101. 101.
    Krempl C, Ballesteros M, Zimmer G, Enjuanes L, Klenk H, Herrler G (2000) Coronaviridae: a review of coronaviruses and toroviruses Characterization of the sialic acid binding activity of transmissible gastroenteritis coronavirus by analysis of haemagglutination-deficient mutants. J Gen Virol 81: 489–496PubMedGoogle Scholar
  102. 102.
    Schwegmann-Wessels C, Zimmer G, Laude H, Enjuanes L, Herrler G (2002) Binding of transmissible gastroenteritis coronavirus to cell surface sialoglyco-proteins. J Virol 76: 99Google Scholar
  103. 103.
    Schultze B, Cavanagh D, Herrler G (1992) Neuraminidase treatment of avian infectious bronchitis coronavirus reveals a hemagglutinating activity that is dependent on sialic acid-containing receptors on erythrocytes. Virology 189: 792–794PubMedGoogle Scholar
  104. 104.
    De Groot RJ, Van Leen RW, Dalderup MJ, Vennema H, Horzinek MC, Spaan WJ (1989) Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology 171: 493–502PubMedGoogle Scholar
  105. 105.
    Grosse B, Siddell SG (1994) Single amino acid changes in the S2 subunit of the MHV surface glycoprotein confer resistance to neutralization by S1 subunit-specific monoclonal antibody. Virology 202: 814–824PubMedGoogle Scholar
  106. 106.
    Pfleiderer M, Routledge E, Siddell SG (1990) Functional analysis of the coronavirus MHV-JHM surface glycoproteins in vaccinia virus recombinants. Adv Exp Med Biol 276: 21–31PubMedGoogle Scholar
  107. 107.
    Keck JG, Soe LH, Makino S, Stohlman SA, Lai MMC (1988) RNA recombination of murine coronaviruses: recombination between fusion positive MHV-A59 and fusion negative MHV-2. J Virol 62: 1989–1998PubMedGoogle Scholar
  108. 108.
    Yoo D, Parker MD, Song J, Cox GJ, Deregt D, Babiuk LA (1991) Structural analysis of the conformational domains involved in neutralisation of bovine coronavirus using deletion mutants of the spike glycoprotein S1 subunit expressed by recombinant baculoviruses. Virology 183: 91–98PubMedGoogle Scholar
  109. 109.
    Luo ZL, Weiss SR (1998) Roles in cell-to-cell fusion of two conserved hydrophobic regions in the murine coronavirus spike protein. Virology 244: 483–494PubMedGoogle Scholar
  110. 110.
    Britton P (1991) Coronavirus motif. Nature 353: 394Google Scholar
  111. 111.
    Gallagher TM, Escarmis C, Buchmeier MJ (1991) Alteration of the pH dependence of coronavirus induced cell fusion — Effect of mutations in the spike glycoprotein. J Virol 65: 1916–1928PubMedGoogle Scholar
  112. 112.
    Routledge E, Stauber R, Pfleiderer M, Siddel SG (1991) Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. J Virol 65: 254–262PubMedGoogle Scholar
  113. 113.
    Luo Z, Matthews AM, Weiss SR (1999) Amino acid substitutions within the leucine zipper domain of the murine coronavirus spike protein cause defects in oligomerization and the ability to induce cell-to-cell fusion. J Virol 73: 8152–8159PubMedGoogle Scholar
  114. 114.
    Luo Z, Weiss SR (1998) Roles in cell-to-cell fusion of two conserved hydrophobic regions in the murine coronavirus spike protein. Virology 244: 483–494PubMedGoogle Scholar
  115. 115.
    Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion care complex. J Virol 77: 8801–8811PubMedGoogle Scholar
  116. 116.
    Luytjes W, Geerts D, Posthumus W, Meloen R, Spaan W (1989) Amino acid sequence of a conserved neutralizing epitope of murine coronaviruses. J Virol 63: 1408–1412PubMedGoogle Scholar
  117. 117.
    Routledge E, Stauber R, Pfleiderer M, Siddell SG (1991) Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. J Virol 65: 254–262PubMedGoogle Scholar
  118. 118.
    Kooi C, Cervin M, Anderson R (1991) Differentiation of acid-pH-dependent and acid-pH-nondependent entry pathways for mouse hepatitis virus. Virology 180: 108–119PubMedGoogle Scholar
  119. 119.
    Weismiller DG, Sturman LS, Buchmeier MJ, Fleming JO, Holmes KV (1990) Monoclonal-antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis-virus identify 2-subunits and detect a conformational change in the subunit released under mild alkaline conditions. J Virol 64: 3051–3055PubMedGoogle Scholar
  120. 120.
    Li D, Cavanagh D (1992) Coronavirus IBV-induced membrane fusion occurs at near-neutral pH. Arch Virol 122: 307–316PubMedGoogle Scholar
  121. 121.
    Tsai JC, de Groot L, Pinon JD, Iacono KT, Phillips JJ, Seo SH, Lavi E, Weiss SR (2003) Amino acid substitutions within the heptad repeat domain 1 of murine coronavirus spike protein restrict viral antigen spread in the central nervous system. Virology 312: 369–380PubMedGoogle Scholar
  122. 122.
    Zelus BD, Schickli JH, Blau DM, Weiss SR, Holmes KV (2003) Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37 degrees C either by soluble murine CEACAM1 receptors or by pH 8. J Virol 77: 830–840PubMedGoogle Scholar
  123. 123.
    Stauber R, Pfleiderer M, Siddell S (1993) Proteolytic cleavage of the murine coronavirus surface glycoprotein is not required for its fusion activity. Adv Exp Med Biol 342: 165–170PubMedGoogle Scholar
  124. 124.
    Taguchi F (1993) Fusion formation by the uncleaved spike protein of murine coronavirus JHMV varient cl-2. J Virol 67: 1195–1202PubMedGoogle Scholar
  125. 125.
    Gombold JL, Hingley ST, Weiss SR (1993) Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal. J Virol 67: 4504–4512PubMedGoogle Scholar
  126. 126.
    Thiel V, Herold J, Schelle B, Siddell SG (2001) Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 175: 6676–6681Google Scholar
  127. 127.
    Ziebuhr J, Siddell SG (1999) Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: Identification of proteolytic products and cleavage sites common to pp1a and pp1ab. J Virol 73: 177–185PubMedGoogle Scholar
  128. 128.
    Brierley I, Digard P, Inglis SC (1989) Characterization of an efficient coronavirus ribosomal frameshifting signal — requirement for an RNA pseudoknot. Cell 57: 537–547PubMedGoogle Scholar
  129. 129.
    Brierley I (1995) Ribosomal frameshifting on viral RNAs. J Gen Virol 76: 1885–1892PubMedGoogle Scholar
  130. 130.
    Makino S, Joo M, Makino JK (1991) A system for study of coronavirus mRNA synthesis: a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion. J Virol 65: 6031–6041PubMedGoogle Scholar
  131. 131.
    van der Most RG, de Groot RJ, Spaan WJM (1994) Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse hepatitis virus: a study of coronavirus transcription initiation. J Virol 68: 3656–3666PubMedGoogle Scholar
  132. 132.
    van Marle G, Dobbe JC, Gultyaev AP, Luytjes W, Spaan WJ, Snijder EJ (1999) Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci USA 96: 12056–12061PubMedGoogle Scholar
  133. 133.
    Alonso S, Izeta A, Sola I, Enjuanes L (2002) Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus. J Virol 76: 1293–1308PubMedGoogle Scholar
  134. 134.
    van Vliet AL, Smits SL, Rottier PJ, de Groot RJ (2002) Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. Embo J 21: 6571–80PubMedGoogle Scholar
  135. 135.
    Fischer F, Peng D, Hingley ST, Weiss SR, Masters PS (1997) The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J Virol 71: 996–1003PubMedGoogle Scholar
  136. 136.
    Senanayake SD, Hofmann MA, Maki JL, Brian DA (1992) The nucleocapsid protein gene of bovine coronavirus is bicistronic. J Virol 66: 5277–5283PubMedGoogle Scholar
  137. 137.
    Liu DX, Inglis SC (1992) Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus. J Virol 66: 6143–6154PubMedGoogle Scholar
  138. 138.
    Thiel V, Siddell SG (1994) Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5. J Gen Virol 75: 3041–3046PubMedGoogle Scholar
  139. 139.
    Le SY, Sonenberg N, Maizel JV Jr (1994) Distinct structural elements and internal entry of ribosomes in mRNA3 encoded by infectious bronchitis virus. Virology 198: 405–411PubMedGoogle Scholar
  140. 140.
    Opstelten DJ, de-Groote P, Horzinek MC, Vennema H, Rottier PJ (1993) Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins. J Virol 67: 7394–7401PubMedGoogle Scholar
  141. 141.
    Frana MF, Behnke JN, Sturman LS, Holmes KV (1985) Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion. J Virol 56: 912–920PubMedGoogle Scholar
  142. 142.
    Cavanagh D, Davis PJ, Pappin DJC, Binns MM, Boursnell MEG, Brown TDK (1986) Coronavirus IBV: partial amino terminal sequencing of spike polypep-tide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Res 4: 133–143PubMedGoogle Scholar
  143. 143.
    Luytjes W, Sturman LS, Bredenbeek PJ, Charite J, Van der Zeijst BA, Horzinek MC, Spaan WJ (1987) Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161: 479–487PubMedGoogle Scholar
  144. 144.
    Vennema H, Heijnen L, Zijderveld A, Horzinek MC, Spaan aWJM (1990) Intracellular transport of recombinant coronavirus spike proteins: Implications for virus assembly. J Virol 64: 339–346PubMedGoogle Scholar
  145. 145.
    Schmidt MFG (1982) Acylation of viral spike glycoproteins, a feature of enveloped RNA viruses. Virology 116: 327–338PubMedGoogle Scholar
  146. 146.
    King B, Potts BJ, Brian DA (1985) Bovine coronavirus hemaglutinin protein. Virus Res 2: 53–59PubMedGoogle Scholar
  147. 147.
    Yoo D, Graham FL, Prevec L, Parker MD, Benko M, Zamb T, Babiuk LA (1992) Synthesis and processing of the haemagglutinin-esterase glycoprotein of bovine coronavirus encoded in the E3 region of adenovirus. J Gen Virol 73: 2591–2600PubMedGoogle Scholar
  148. 148.
    Cavanagh D (1983) Coronavirus IBV glycopolypeptides: size of their polypep-tide moieties and nature of their oligosaccharides. J Gen Virol 64: 1187–1191PubMedGoogle Scholar
  149. 149.
    Stern DF, Sefton BM (1982) Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. J Virol 44: 804–812PubMedGoogle Scholar
  150. 150.
    Laude H, Rasschaert D, Huet JC (1987) Sequence and N terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J Gen Virol 68: 1687–1693PubMedGoogle Scholar
  151. 151.
    Kapke PA, Tung FYT, Hogue BG, Brian DA, Woods RD, Wesley RD (1988) The amino terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology 165: 367–376PubMedGoogle Scholar
  152. 152.
    Vennema H, Degroot RJ, Harbour DA, Horzinek MC, Spaan WJM (1991) Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology 181: 327–335PubMedGoogle Scholar
  153. 153.
    Garwes DJ, Pocock DH, Pike BV (1976) Isolation of subviral components from transmissible gastroenteritis virus. J Gen Virol 32: 283–294PubMedGoogle Scholar
  154. 154.
    Yu X, Bi W, Weiss SR, Leibowitz JL (1994) Mouse hepatitis virus gene 5b protein is a new virion envelope protein. Virology 202: 1018–1023PubMedGoogle Scholar
  155. 155.
    Escors D, Izeta A, Capiscol C, Enjuanes L (2003) Transmissible gastroenteritis coronavirus packaging signal is located at the 5’ end of the virus genome. J Virol 77: 7890–7902PubMedGoogle Scholar
  156. 156.
    Makino S, Soe LH, Shieh C-K, Lai MMC (1988) Discontinuous transcription generates heterogeneity at the leader fusion sites of coronavirus mRNAs. J Virol 62: 3870–3873PubMedGoogle Scholar
  157. 157.
    La Monica N, Yokomori K, Lai MMC (1992) Coronavirus mRNA synthesis: Identification of novel transcription initiation signals which are differentially regulated by different leader sequences. Virology 188: 402–407PubMedGoogle Scholar
  158. 158.
    Makino S, Lai MMC (1989) Evolution of the 5’-end of genomic RNA of murine coronaviruses during passages in vitro. Virology 169: 227–232PubMedGoogle Scholar
  159. 159.
    Hofmann MA, Chang R-Y, Ku S, Brian DA (1993) Leader-mRNA junction sequences are unique for each subgenomic mRNA species in the bovine coronavirus and remain so throughout persistent infection. Virology 196: 163–171PubMedGoogle Scholar
  160. 160.
    Salanueva IJ, Carrascosa JL, Risco C (1999) Structural maturation of the transmissible gastroenteritis coronavirus. J Virol 73: 7952–64PubMedGoogle Scholar
  161. 161.
    Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G (1994) Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol 124: 55–70PubMedGoogle Scholar
  162. 162.
    Escors D, Camafeita E, Ortego J, Laude H, Enjuanes L (2001) Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. J Virol 75: 12228–12240PubMedGoogle Scholar
  163. 163.
    Escors D, Ortego J, Laude H, Enjuanes L (2001) The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol 75: 1312–1324PubMedGoogle Scholar
  164. 164.
    Fischer F, Stegen CF, Masters PS, Samsonoff WA (1998) Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J Virol 72: 7885–7894PubMedGoogle Scholar
  165. 165.
    Corse E, Machamer CE (2002) The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting. J Virol 76: 1273–1284PubMedGoogle Scholar
  166. 166.
    Lim KP, Liu DX (2001) The missing link in coronavirus assembly. Retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins. J Biol Chem 276: 17515–17523PubMedGoogle Scholar
  167. 167.
    Baudoux P, Carrat C, Besnardeau L, Charley B, Laude H (1998) Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J Virol 72: 8636–8643PubMedGoogle Scholar
  168. 168.
    Maeda J, Maeda A, Makino S (1999) Release of coronavirus E protein in membrane vesicles from virusinfected cells and E protein-expressing cells. Virology 263: 265–272PubMedGoogle Scholar
  169. 169.
    Kuo LL, Masters PS (2003) The small envelope protein E is not essential for murine coronavirus replication. J Virol 77: 4597–4608PubMedGoogle Scholar
  170. 170.
    Kuo L, Masters PS (2003) The small envelope protein e is not essential for murine coronavirus replication. J Virol 77: 4597–4608PubMedGoogle Scholar
  171. 171.
    Risco C, Muntion M, Enjuanes L, Carrascosa JL (1998) Two types of virusrelated particles are found during transmissible gastroenteritis virus morphogenesis. J Virol 72: 4022–4031PubMedGoogle Scholar
  172. 172.
    Lai MMC (1992) Genetic recombination in RNA viruses. Curr Top Microbiol Immunol 176: 21–32PubMedGoogle Scholar
  173. 173.
    Lai MMC, Baric RS, Makino S, Keck JG, Egbert J, Leibowitz JL, Stohlman SA (1985) Recombination between nonsegmented RNA genomes of murine coronaviruses. J Virol 56: 449–456PubMedGoogle Scholar
  174. 174.
    Ballesteros ML, Sanchez CM, Enjuanes L (1997) Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227: 378–388PubMedGoogle Scholar
  175. 175.
    Kottier SA, Cavanagh D, Britton P (1995) Experimental evidence of recombi-nation in coronavirus infectious bronchitis virus. Virology 213: 569–580PubMedGoogle Scholar
  176. 176.
    Cavanagh D, Davis PJ (1988) Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J Gen Virol 69: 621–629PubMedGoogle Scholar
  177. 177.
    Cavanagh D, Davis PJ, Cook JKA (1992) Infectious-bronchitis virus — evidence for recombination within the massachusetts serotype. Avian Pathol 21: 401–408Google Scholar
  178. 178.
    Jia W, Karaca K, Parrish CR, Naqi SA (1995) A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains. Arch Virol 140: 259–271PubMedGoogle Scholar
  179. 179.
    Wang L, Junker D, Collisson EW (1993) Evidence of natural recombination within the S1 gene of infectious bronchitis virus. Virology 192: 710–716PubMedGoogle Scholar
  180. 180.
    Wang L, Junker D, Hock L, Ebiary E, Collisson EW (1994) Evolutionary implications of genetic variations in the S1 gene of infectious bronchitis virus. Virus Res 34: 327–338PubMedGoogle Scholar
  181. 181.
    Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ (1998) Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72: 4508–4514PubMedGoogle Scholar
  182. 182.
    Snijder EJ, Denboon JA, Horzinek MC, Spaan WJM (1991) Comparison of the genome organization of toroviruses and coronaviruses — evidence for two non-homologous RNA recombination events during berne virus evolution. Virology 180: 448–452PubMedGoogle Scholar
  183. 183.
    Adzhar AB, Shaw K, Britton P, Cavanagh D (1995) Avian infectious bronchitis virus: differences between 793/B and other strains. Vet Rec 136: 548Google Scholar
  184. 184.
    Kingham BF, Keeler CL Jr, Nix WA, Ladman BS, Gelb J Jr (2000) Identification of avian infectious bronchitis virus by direct automated cycle sequencing of the S-1 gene. Avian Dis 44: 325–335PubMedGoogle Scholar
  185. 185.
    Adzhar A, Gough RE, Haydon D, Shaw K, Britton P, Cavanagh D (1997) Molecular analysis of the 793/B serotype of infectious bronchitis virus in Great Britain. Avian Pathol 26: 625–640Google Scholar
  186. 186.
    Gelb J, Keeler CL, Nix WA, Rosenberger JK, Cloud SS (1997) Antigenic and S-1 genomic characterization of the Delaware variant serotype of infectious bronchitis virus. Avian Dis 41: 661–669PubMedGoogle Scholar
  187. 187.
    Sapats SI, Ashton F, Wright PJ, Ignjatovic J (1996) Sequence analysis of the S1 glycoprotein of infectious bronchitis viruses: Identification of a novel genotypic group in Australia. J Gen Virol 77: 413–418PubMedGoogle Scholar
  188. 188.
    Cavanagh D, Mawditt K, Sharma M, Drury SE, Ainsworth HL, Britton P, Gough RE (2001) Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens. Avian Pathol 30: 355–368Google Scholar
  189. 189.
    Cavanagh D, Mawditt K, Welchman DdB, Britton P, Gough RE (2002) Coronaviruses from pheasants (Phasianus colchicus) are genetically closely related to coronaviruses of domestic fowl (infectious bronchitis virus) and turkeys. Avian Pathol 31: 181–193Google Scholar
  190. 190.
    Cavanagh D, Davis PJ, Cook JKA, Li D, Kant A, Koch G (1992) Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathol 21: 33–43Google Scholar
  191. 191.
    Cook JKA (1984) The classification of new serotypes of infectious bronchitis virus isolated from poultry flocks in Britain between 1981 and 1983. Avian Pathol 13: 733–741Google Scholar
  192. 192.
    Cook JKA, Huggins MB (1986) Newly isolated serotypes of infectious bronchitis virus: their role in disease. Avian Pathol 15: 129–138Google Scholar
  193. 193.
    Cavanagh D, Ellis MM, Cook JKA (1997) Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo. Avian Pathol 26: 63–74Google Scholar
  194. 194.
    Cavanagh D, Davis PJ, Mockett AP (1988) Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Res 11: 141–150PubMedGoogle Scholar
  195. 195.
    Kant A, Koch G, van Roozelaar DJ, Kusters JG, Poelwijk FAJ, van der Zeijst BAM (1992) Location of antigenic sites defined by neutralising monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide. J Gen Virol 73: 591–596PubMedGoogle Scholar
  196. 196.
    Koch G, Hartog L, Kant A, van Roozelaar DJ (1990) Antigenic domains of the peplomer protein of avian infectious bronchitis virus: correlation with biological function. J Gen Virol 71: 1929–1935PubMedGoogle Scholar
  197. 197.
    Suzuki H, Taguchi F (1996) Analysis of the receptor-binding site of murine coronavirus spike protein. J Virol 70: 2632–2636PubMedGoogle Scholar
  198. 198.
    Britton P, Mawditt KL, Page KW (1991) The cloning and sequencing of the virion protein genes from a British isolate of porcine respiratory coronavirus: comparison with transmissible gastroenteritis virus genes. Virus Res 21: 181–198PubMedGoogle Scholar
  199. 199.
    Enjuanes L, van der Zeijst BAM (1995) Molecular basis of transmissible gastroenteritis virus epidemiology. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York and London, 337–376Google Scholar
  200. 200.
    Garwes DJ (1995) Pathogenesis of the porcine coronaviruses. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York and London, 377–388Google Scholar
  201. 201.
    Myint SH (1995) Human coronavirus infections. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York, 389–402Google Scholar
  202. 202.
    Zhang XM, Herbst W, Kousoulas KG, Storz J (1994) Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child. J Med Virol 44: 152–161PubMedGoogle Scholar
  203. 203.
    Erles K, Toomey C, Brooks HW, Brownlie J (2003) Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology 310: 216–223PubMedGoogle Scholar
  204. 204.
    Ismail MM, Cho KO, Ward LA, Saif LJ, Saif YM (2001) Experimental bovine coronavirus in turkey poults and young chickens. Avian Dis 45: 157–163PubMedGoogle Scholar
  205. 205.
    Woods RD, Wesley RD (1992) Seroconversion of pigs in contact with dogs exposed to canine coronavirus. Can J Vet Res 56: 78–80PubMedGoogle Scholar
  206. 206.
    Fouchier RA, Kuiken T, Schutten M, Van Amerongen G, Van Doornum GJ, Van Den Hoogen BG, Peiris M, Lim W, Stohr K, Osterhaus AD (2003) Aetiology: Koch’s postulates fulfilled for SARS virus. Nature 423: 240PubMedGoogle Scholar
  207. 207.
    Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, Van Amerongen G, Peiris JS, Lim W, Osterhaus AD (2003) Virology: SARS virus infection of cats and ferrets. Nature 425: 915PubMedGoogle Scholar
  208. 208.
    Cavanagh D, Naqi S (2003) Infectious bronchitis. In: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (eds): Diseases of Poultry. Blackwell, Ames, Iowa, vol 11, 101–119Google Scholar
  209. 209.
    Cook JKA, Mockett APA (1995) Epidemiology of infectious bronchitis virus. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York and London, 317–335Google Scholar
  210. 210.
    Hirano N, Goto N, Ogawa T, Ono K, Murakani T, Fukiwara K (1980) Hydrocephalus in suckling rats infected intracerebrally with mouse hepatitis virus MHV-A59. Microbiol Immunol 24: 825PubMedGoogle Scholar
  211. 211.
    de Groot RJ, Horzinek MC (1995) Feline infectious peritonitis. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York and London, 293–315Google Scholar
  212. 212.
    Addie DD, Jarrett O (2001) Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats. Vet Rec 148: 649–53.PubMedGoogle Scholar
  213. 213.
    Addie DD, Schaap IA, Nicolson L, Jarrett O (2003) Persistence and transmission of natural type I feline coronavirus infection. J Gen Virol 84: 2735–2744PubMedGoogle Scholar
  214. 214.
    Chen BY, Hosi S, Itakura C (1996) Histopathology and immunohistochemistry of renal lesions due to an infectious bronchitis virus in chicks. Avian Pathol 25: 269–283Google Scholar
  215. 215.
    Chen BY, Itakura C (1996) Cytopathology of chick renal epithelia cells experimentally infected with avian infectious bronchitis virus. Avian Pathol 25: 675–690Google Scholar
  216. 216.
    Chen BY, Itakura C (1996) Cytopathology of chick renal epithelial cells experimentally infected with avian infectious bronchitis virus. Avian Pathol 25: 675–690Google Scholar
  217. 217.
    Pensaert M, Lambrechts C (1994) Vaccination of chickens against a Belgian nephropathogenic strain of infectious bronchitis virus B1648 using attenuated homologous and heterologous strains. Avian Pathol 23: 631–641Google Scholar
  218. 218.
    Yu L, Jiang Y, Low S, Wang Z, Nam SJ, Liu W, Kwangac J (2001) Characterization of three infectious bronchitis virus isolates from China associated with proventriculus in vaccinated chickens. Avian Dis 45: 416–424PubMedGoogle Scholar
  219. 219.
    Dales S, Anderson R (1995) Pathogenesis and diseases of the central nervous system caused by murine coronaviruses. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York and London, 257–292Google Scholar
  220. 220.
    Stohlman SA, Hinton DR (2001) Viral induced demyelination. Brain Pathol 11: 92–106PubMedGoogle Scholar
  221. 221.
    Matthews AE, Weiss SR, Paterson Y (2002) Murine hepatitis virus — a model for virus-induced CNS demyelination. J Neurovirol 8: 76–85PubMedGoogle Scholar
  222. 222.
    Arbour N, Day R, Newcombe J, Talbot PJ (2000) Neuroinvasion by human respiratory coronaviruses. J Virol 74: 8913–8921PubMedGoogle Scholar
  223. 223.
    Stewart JN, Mounir S, Talbot PJ (1992) Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology 191: 502–505PubMedGoogle Scholar
  224. 224.
    Dessau RB, Lisby G, Frederiksen JL (2001) Coronaviruses in brain tissue from patients with multiple sclerosis. Acta Neuropathol (Berl) 101: 601–604PubMedGoogle Scholar
  225. 225.
    Arbour N, Cote G, Lachance C, Tardieu M, Cashman NR, Talbot PJ (1999) Acute and persistent infection of human neural cell lines by human coronavirus OC43. J Virol 73: 3338–3350PubMedGoogle Scholar
  226. 226.
    Enjuanes L, Smerdou C, Sanchez CM, Sune C, Kelly S, Curtiss R 3rd, Torres JM (1995) Induction of transmissible gastroenteritis coronavirus specific immune responses using vectors with enteric tropism. Adv Exp Med Biol 1535–1541Google Scholar
  227. 227.
    Peiris J, Lai S, Poon L, Guan Y, Yam L, Lim W, Nicholls J, Yee W, Yan W, Cheung M et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361: 1319–1325CrossRefPubMedGoogle Scholar
  228. 228.
    Hodgson T, Casais R, Dove B, Britton P, Cavanagh D (2004) Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity. J Virol 78: 13804–13811PubMedGoogle Scholar
  229. 229.
    Casais R, Dove B, Cavanagh D, Britton P (2003) Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol 77: 9084–9089PubMedGoogle Scholar
  230. 230.
    Sanchez CM, Izeta A, Sanchez-Morgado JM, Alonso S, Sola I, Balasch M, Plana-Duran J, Enjuanes L (1999) Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol 73: 7607–7618PubMedGoogle Scholar
  231. 231.
    Leparc-Goffart I, Hingley ST, Chua MM, Jiang X, Lavi E, Weiss SR (1997) Altered pathogenesis of a mutant of the murine coronavirus MHV-A59 is associated with a Q159L amino acid substitution in the spike protein. Virology 239: 1–10PubMedGoogle Scholar
  232. 232.
    Das Sarma J, Fu L, Tsai JC, Weiss SR, Lavi E (2000) Demyelination determinants map to the spike glycoprotein gene of coronavirus mouse hepatitis virus. J Virol 74: 9206–9213PubMedGoogle Scholar
  233. 233.
    Phillips JJ, Chua MM, Lavi E, Weiss SR (1999) Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. J Virol 73: 7752–7760PubMedGoogle Scholar
  234. 234.
    Phillips JJ, Chua M, Seo SH, Weiss SR (2001) Multiple regions of the murine coronavirus spike glycoprotein influence neurovirulence. J Neurovirol 7: 421–431PubMedGoogle Scholar
  235. 235.
    Navas S, Seo SH, Chua MM, Sarma JD, Lavi E, Hingley ST, Weiss SR (2001) Murine coronavirus spike protein determines the ability of the virus to replicate in the liver and cause hepatitis. J Virol 75: 2452–2457PubMedGoogle Scholar
  236. 236.
    Jones RC, Ambali AG (1987) Re-excretion of an enterotropic infectious bronchitis virus by hens at point of lay after experimental infection at day old. Vet Rec 120: 617–618PubMedGoogle Scholar
  237. 237.
    Naqi S, Gay K, Patalla P, Mondal S, Liu R (2003) Establishment of persistent avian infectious bronchitis virus infection in antibody-free and antibody-positive chickens. Avian Dis 47: 594–601PubMedGoogle Scholar
  238. 238.
    Darbyshire JH, Peters RW (1984) Sequential development of humoral immunity and assessment of protection in chickens following vaccination and challenge with avian infectious bronchitis virus. Res Vet Sci 37: 77–86PubMedGoogle Scholar
  239. 239.
    Gough RE, Alexander D (1979) Comparison of duration of immunity in chickens infected with a live infectious bronchitis vaccine by three different routes. Res Vet Sci 26: 329–332PubMedGoogle Scholar
  240. 240.
    Cavanagh D, Davis PJ, Darbyshire JH, Peters RW (1986) Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J Gen Virol 67: 1435–1442PubMedGoogle Scholar
  241. 241.
    Ignjatovic J, Galli L (1994) The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Arch Virol 138: 117–134PubMedGoogle Scholar
  242. 242.
    Song CS, Lee YJ, Lee CW, Sung HW, Kim JH, Mo IP, Izumiya Y, Jang HK, Mikami T (1998) Induction of protective immunity in chickens vaccinated with infectious bronchitis virus S1 glycoprotein expressed by a recombinant baculovirus. J Gen Virol 79: 719–723PubMedGoogle Scholar
  243. 243.
    Macdonald JW, Randall CJ, McMartin DA, Dagless MD, Gazdzinski P (1981) Active and passive immunisation against nephritis induced by an avian infectious bronchitis virus. Avian Pathol 10: 121–129Google Scholar
  244. 244.
    Bumstead N, Huggins MB, Cook JKA (1989) Genetic differences in susceptibility to a mixture of avian infectious bronchitis virus and Escherichia coli. Brit Poultry Sci 30: 39–48Google Scholar
  245. 245.
    Cook JKA, Smith HW, Huggins MB (1986) Infectious bronchitis immunity: its study in chickens experimentally infected with mixtures of infectious bronchitis virus and Escherichia coli. J Gen Virol 67: 1427–1434PubMedGoogle Scholar
  246. 246.
    Otsuki K, Huggins MB, Cook JKA (1990) Comparison of the susceptibility to avian infectious bronchitis virus infection of two inbred lines of White Leghorn chickens. Avian Pathol 19: 467–475Google Scholar
  247. 247.
    Smith HW, Cook JKA, Parsell ZE (1985) The experimental infection of chickens with mixtures of infectious bronchitis virus and Escherichia coli. J Gen Virol 66: 777–786PubMedGoogle Scholar
  248. 248.
    Johnson MA, Pooley C, Ignjatovic J, Tyack SG (2003) A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus. Vaccine 21: 2730–2736PubMedGoogle Scholar
  249. 249.
    Wesseling JG, Godeke G-J, Schijns VECJ, Prevec L, Graham FL, Horzinek MC, Rottier PJM (1993) Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect mice against a lethal infection. J Gen Virol 74: 2061–2069PubMedGoogle Scholar
  250. 250.
    Boots AMH, Benaissatrouw BJ, Hesselink W, Rijke E, Schrier C, Hensen EJ (1992) Induction of antiviral immune-responses by immunization with recombinant-DNA encoded avian coronavirus nucleocapsid protein. Vaccine 10: 119–124PubMedGoogle Scholar
  251. 251.
    Seo SH, Wang L, Smith R, Collisson EW (1997) The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J Virol 71: 7889–7894PubMedGoogle Scholar
  252. 252.
    Pei J, Briles WE, Collisson EW (2003) Memory T cells protect chicks from acute infectious bronchitis virus infection. Virology 306: 376–384PubMedGoogle Scholar
  253. 253.
    Collisson EW, Pei J, Dzielawa J, Seo SH (2000) Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev Comp Immunol 24: 187–200PubMedGoogle Scholar
  254. 254.
    Seo SH, Pei J, Briles WE, Dzielawa J, Collisson EW (2000) Adoptive transfer of infectious bronchitis virus primed alphabeta T cells bearing CD8 antigen protects chicks from acute infection. Virology 269: 183–189PubMedGoogle Scholar
  255. 255.
    Korner H, Schliephake A, Winter J, Zimprich F, Lassmann H, Sedgwick J, Siddell S, Wege H (1991) Nucleocapsid or spike protein-specific cd4+ lymphocytes-t protect against coronavirus-induced encephalomyelitis in the absence of cd8+ cells-t. J Immunol 147: 2317–2323PubMedGoogle Scholar
  256. 256.
    Bergmann C, McMillan M, Stohlman S (1993) Characterization of the Ld-restricted cytotoxic T-lymphocyte epitope in the mouse hepatitis virus nucleocapsid protein. J Virol 67: 7041–7049PubMedGoogle Scholar
  257. 257.
    Stohlman SA, Kyuwa S, Cohen M, Bergmann C, Polo JM, Yeh J, Anthony R, Keck JG (1992) Mouse hepatitis-virus nucleocapsid protein-specific cytotoxic lymphocytes-t are L(d) restricted and specific for the carboxy terminus. Virology 189: 217–224PubMedGoogle Scholar
  258. 258.
    Stohlman SA, Kyuwa S, Polo JM, Brady D, Lai MMC, Bergmann C (1993) Characterization of mouse hepatitis virus specific cytotoxic T cells derived from the central nervous system of mice infected with the JHM strain. J Virol 67: 7050–7059PubMedGoogle Scholar
  259. 259.
    Wege H, Schliephake A, Korner H, Flory E, Wege H (1993) An immunodominant CD4+ T-cell site on the nucleocapsid protein of murine coronavirus contributes to protection against encephalomyelitis. J Gen Virol 74: 1287–1294PubMedGoogle Scholar
  260. 260.
    Nakanaga K, Yamanouchi K, Fuziwara K (1986) Protective effect of monoclonal antibodies on lethal mouse hepatitis virus infection in mice. J Virol 59: 168–171PubMedGoogle Scholar
  261. 261.
    Evermann JF, Heeney JL, McKeirnan AJ, Obrien SJ (1989) Comparative features of a coronavirus isolated from a cheetah with feline infectious peritonitis. Virus Res 13: 15–28PubMedGoogle Scholar
  262. 262.
    Heeney JL, Evermann JF, McKeirnan AJ, Marker-Kraus L, Roelke ME, Bush M, Wildt DE, Meltzer DG, Colly L, Lukas J et al (1990) Prevalence and implications of feline coronavirus infections of captive and free-ranging cheetahs (Acinonyx jubatus). J Virol 64: 1964–1972PubMedGoogle Scholar
  263. 263.
    Cavanagh D, Brian DA, Brinton M, Enjuanes L, Holmes KV, Horzinek MC, Lai MMC, Laude H, Plagemann PGW, Siddell S et al (1994) Revision of the taxonomy of the coronavirus, torovirus and arterivirus genera. Arch Virol 135: 227–237PubMedGoogle Scholar
  264. 264.
    Enjuanes L, Brian D, Cavanagh D, Holmes K, Lai MMC, Laude H, Masters P, Rottier P, Siddell SG, Spaan WJM et al (2000) Coronaviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon S, Maniloff J, Mayo M, McGeoch DJ, Pringle CR, Wickner RB (eds): Virus Taxonomy. Classification and Nomenclature of Viruses. Academic Press, San Diego, 835–849Google Scholar
  265. 265.
    Duckmanton L, Luan B, Devenish J, Tellier R, Petric M (1997) Characterization of torovirus from human faecal specimens. Virology 239: 158–168PubMedGoogle Scholar
  266. 266.
    González JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L (2003) Taxonomical relations within the family Coronaviridae based on sequence identity analysis. Arch Virol 148: 2207–2235CrossRefPubMedGoogle Scholar
  267. 267.
    Daniel C, Talbot PJ (1990) Protection from lethal coronavirus infection by affinity-purified spike glycoprotein of murine hepatitis virus, strain-A59. Virology 174: 87–94PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Dave Cavanagh
    • 1
  1. 1.Compton LaboratoryInstitute for Animal HealthNewburyUK

Personalised recommendations