Dynamical Aspects of Analogue Gravity: The Backreaction of Quantum Fluctuations in Dilute Bose-Einstein Condensates

  • U. R. Fischer
Part of the Lecture Notes in Physics book series (LNP, volume 718)


Curved space-times are familiar from Einstein’s theory of gravitation [1], where the metric tensor gμν, describing distances in a curved space-time with local Lorentz invariance, is determined by the solution of the Einstein equations. A major problem for an experimental investigation of the (kinematical as well as dynamical) properties of curved space-times is that generating a significant curvature, equivalent to a (relatively) small curvature radius, is a close to impossible undertaking in manmade laboratories.


Black Hole Bernoulli Equation Healing Length Constant Time Slice Versus Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, 1973)Google Scholar
  2. 2.
    J. R. Anglin and W. Ketterle, “Bose-Einstein condensation of atomic gases”, Nature 416, 211 (2002)CrossRefADSGoogle Scholar
  3. 3.
    A. J. Leggett, “Bose-Einstein condensation in the alkali gases: Some fundamental concepts”, Rev. Mod. Phys. 73, 307 (2001)CrossRefADSGoogle Scholar
  4. 4.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, “Theory of Bose- Einstein condensation in trapped gases”, Rev. Mod. Phys. 71, 463 (1999)CrossRefADSGoogle Scholar
  5. 5.
    I. M. Khalatnikov, An Introduction to the Theory of Superfluidity (AddisonWesley, Reading, MA, 1965)Google Scholar
  6. 6.
    H. Minkowski, “Raum und Zeit”, Physik. Zeitschr. 10, 104 (1909)Google Scholar
  7. 7.
    W. G. Unruh, “Experimental Black-Hole Evaporation?”, Phys. Rev. Lett. 46, 1351 (1981)CrossRefADSGoogle Scholar
  8. 8.
    M. Visser, “Acoustic black holes: horizons, ergospheres, and Hawking radiation”, Class. Quantum Grav. 15, 1767 (1998)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    G. E. Volovik, The Universe in a Helium Droplet (Oxford University Press, Oxford, 2003)MATHGoogle Scholar
  10. 10.
    A. Trautman, “Comparison of Newtonian and relativistic theories of spacetime”, in: Perspectives in Geometry and Relativity (Indiana University Press, Bloomington, 1966)Google Scholar
  11. 11.
    P. Painlevé, “La mécanique classique et la théorie de la relativité”, C. R. Hebd. Acad. Sci. (Paris) 173, 677 (1921); A. Gullstrand, “Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie”, Arkiv. Mat. Astron. Fys. 16, 1 (1922)Google Scholar
  12. 12.
    U. R. Fischer and M. Visser, “On the space-time curvature experienced by quasiparticle excitations in the Painlevé-Gullstrand effective geometry”, Ann. Phys. (N.Y.) 304, 22 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    E. Madelung, “Quantentheorie in hydrodynamischer Form”, Z. Phys. 40, 322 (1927)CrossRefADSGoogle Scholar
  14. 14.
    L. Onsager, “Statistical Hydrodynamics”, Nuovo Cimento Suppl. 6, 279 (1949)MathSciNetCrossRefGoogle Scholar
  15. 15.
    C. Barceló, S. Liberati, and M. Visser, “Analogue gravity from field theory normal modes?”, Class. Quantum Grav. 18, 3595 (2001)MATHCrossRefADSGoogle Scholar
  16. 16.
    T. A. Jacobson and G. E. Volovik, “Event horizons and ergoregions in 3He”, Phys. Rev. D 58, 064021 (1998)CrossRefADSGoogle Scholar
  17. 17.
    W. Gordon, “Zur Lichtfortpflanzung nach der Relativitätstheorie”, Ann. Phys. (Leipzig) 72, 421 (1923); U. Leonhardt, “Space-time geometry of quantum dielectrics”, Phys. Rev. A 62, 012111 (2000); R. Schützhold, G. Plunien, and G. So., “Dielectric Black Hole Analogs”, Phys. Rev. Lett. 88, 061101 (2002)ADSGoogle Scholar
  18. 18.
    R. Schützhold and W. G. Unruh, “Gravity wave analogues of black holes”, Phys. Rev. D 66, 044019 (2002)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    N. D. Birrell and P.C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, 1984)Google Scholar
  20. 20.
    W. G. Unruh and R. Schützhold, “On slow light as a black hole analogue”, Phys. Rev. D 68, 024008 (2003)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    M. Visser, “Hawking radiation without black hole entropy”, Phys. Rev. Lett. 80, 3436 (1998); L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, “Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates”, Phys. Rev. Lett. 85, 4643 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    P. O. Fedichev and U. R. Fischer, “Gibbons-Hawking Effect in the Sonic de Sitter Space-Time of an Expanding Bose-Einstein-Condensed Gas”, Phys. Rev. Lett. 91, 240407 (2003); “Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose-Einstein condensate”, Phys. Rev. D 69, 064021 (2004)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    P. O. Fedichev and U. R. Fischer, “‘Cosmological’ quasiparticle production in harmonically trapped superfluid gases”, Phys. Rev. A 69, 033602 (2004)CrossRefADSGoogle Scholar
  24. 24.
    C. Barceló, S. Liberati, and M. Visser, “Probing semiclassical analog gravity in Bose-Einstein condensates with widely tunable interactions”, Phys. Rev. A 68, 053613 (2003)CrossRefADSGoogle Scholar
  25. 25.
    U. R. Fischer and R. Schützhold, “Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates”, Phys. Rev. A 70, 063615 (2004); R. Schützhold, “Dynamical Zero-Temperature Phase Transitions and Cosmic Inflation or Deflation”, Phys. Rev. Lett. 95, 135703 (2005); M. Uhlmann, Y. Xu, and R. Schützhold, “Aspects of Cosmic Inflation in Expanding Bose-Einstein Condensates”, New J. Phys. 7, 248.1-248.17 (2005)CrossRefADSGoogle Scholar
  26. 26.
    C. Barceló, S. Liberati, and M. Visser, “Analogue Gravity”, Living Rev. Relativity 8, 12.1–12.113 (2005); URL: http://www.livingreviews.org/lrr-2005-12Google Scholar
  27. 27.
    M. Stone, “Acoustic energy and momentum in a moving medium”, Phys. Rev. E 62, 1341 (2000); “Phonons and forces: Momentum versus pseudomomentum in moving fluids”, p. 335 in M. Novello, M. Visser, and G. Volovik (editors), Artificial Black Holes (World Scientific, Singapore, 2002)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    R. Balbinot, S. Fagnocchi, A. Fabbri, and G.P. Procopio, “Backreaction in acoustic black holes”, Phys. Rev. Lett. 94, 161302 (2005); R. Balbinot, S. Fagnocchi, and A. Fabbri, “Quantum effects in acoustic black holes: The backreaction”, Phys. Rev. D 71, 064019 (2005)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    R. Schützhold, M. Uhlmann, Y. Xu, and U. R. Fischer, “Quantum backreaction in dilute Bose-Einstein condensates”, Phys. Rev. D 72, 105005 (2005)CrossRefADSGoogle Scholar
  30. 30.
    M. Girardeau and R. Arnowitt, “Theory of Many-Boson Systems: Pair Theory”, Phys. Rev. 113, 755 (1959); C. W. Gardiner, “Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross-Pitaevskií equation for a highly condensed Bose gas”, Phys. Rev. A 56, 1414 (1997); M. D. Girardeau, ibid. 58, 775 (1998)MATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Y. Castin and R. Dum, “Low-temperature Bose-Einstein condensates in timedependent traps: Beyond the U(1) symmetry-breaking approach”, Phys. Rev. A 57, 3008 (1998)CrossRefADSGoogle Scholar
  32. 32.
    E. H. Lieb, R. Seiringer, and J. Yngvason, “Bosons in a trap: A rigorous derivation of the Gross-Pitaevskií energy functional”, Phys. Rev. A 61, 043602 (2000)CrossRefADSGoogle Scholar
  33. 33.
    The total particle number operator Ň = ÂÂ and the corresponding creation and annihilation operators satisfy Â, Â = 1 and [χ, Â Ň-1/2]=[ζ, Â Ň-1/2] = 0, i.e., the excitations χ and ζ are particlenumber-conserving, and thus the full Hamiltonian can be written in terms of these operators, cf. [30, 31]. The mean-field ansatz in Eq. (12) can be motivated by starting with N free particles, g = 0, in the same single-particle state ψc with ζ = 0 and subsequently switching on the coupling g > 0 by following the evolution in Eqs. (13)-(15) such that the corrections ζ = б(1/√N) remain small [34]Google Scholar
  34. 34.
    R. Schützhold, M. Uhlmann, Y. Xu, and U. R. Fischer, “Mean-field expansion in Bose-Einstein condensates with finite-range interactions”, Int. J. Mod. Phys. B 20, 3555 (2006)MATHCrossRefADSGoogle Scholar
  35. 35.
    E.P. Gross, “Structure of a Quantized Vortex in Boson Systems”, Nuovo Cimento 20, 454 (1961); “Hydrodynamics of a superfluid condensate”, J. Math. Phys. 4, 195 (1963); L.P. Pitaevskii, “Vortex lines in an imperfect Bose gas”, Sov. Phys. JETP 13, 451 (1961)MATHCrossRefGoogle Scholar
  36. 36.
    T. D. Lee and C. N. Yang, “Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics”, Phys. Rev. 105, 1119 (1957); T. D. Lee, K. Huang, and C. N. Yang, “Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties”, ibid. 106, 1135 (1957); E. Timmermans, P. Tommasini, and K. Huang, “Variational Thomas-Fermi theory of a nonuniform Bose condensate at zero temperature”, Phys. Rev. A 55, 3645 (1997)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    N. N. Bogoliubov, “On the Theory of Superfluidity”, J. Phys. (USSR) 11, 23 (1947); P. G. de Gennes, Superconductivity of Metals and Alloys (W. A. Benjamin, New York, 1966)Google Scholar
  38. 38.
    A. Griffin, “Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures”, Phys. Rev. B 53, 9341 (1996); E. Zaremba, A. Grif- frin, and T. Nikuni, “Two-fluid hydrodynamics for a trapped weakly interacting Bose gas”, Phys. Rev. A 57, 4695 (1998)CrossRefADSGoogle Scholar
  39. 39.
    V. I. Yukalov and E.P. Yukalova, “Normal and Anomalous Averages for Systems with Bose-Einstein Condensate”, Laser Phys. Lett. 2, 506 (2005)CrossRefADSGoogle Scholar
  40. 40.
    C. Barceló, S. Liberati, and M. Visser, “Analogue gravity from Bose-Einstein condensates”, Class. Quantum Grav. 18, 1137 (2001)MATHCrossRefADSGoogle Scholar
  41. 41.
    We note that the problem that the “canonical” commutator between density and phase operators leads to fundamental inconsistencies was first pointed out in the context of superfluid hydrodynamics by H. Fröhlich, “A contradiction between quantum hydrodynamics and the existence of particles”, Physica 34, 47 (1967)CrossRefADSGoogle Scholar
  42. 42.
    Y. Castin, “Simple theoretical tools for low dimension Bose gases”, J. Phys. IV France 116, 89 (2004)CrossRefGoogle Scholar
  43. 43.
    D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold Bosonic Atoms in Optical Lattices”, Phys. Rev. Lett. 81, 3108 (1998)CrossRefADSGoogle Scholar
  44. 44.
    M. Olshanii, “Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons”, Phys. Rev. Lett. 81, 938 (1998)CrossRefADSGoogle Scholar
  45. 45.
    A. Görlitz et al., “Realization of Bose-Einstein condensates in lower dimensions”, Phys. Rev. Lett. 87, 130402 (2001)CrossRefGoogle Scholar
  46. 46.
    L. Pitaevskii and S. Stringari, “Uncertainty principle and off-diagonal long-range order in the fractional quantum Hall effect”, Phys. Rev. B 47, 10915 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • U. R. Fischer
    • 1
  1. 1.Institut für Theoretische PhysikEberhard-Karls-Universität TübingenTübingenGermany

Personalised recommendations