Advertisement

Quantum Phase Transitions from Topology in Momentum Space

  • G. E. Volovik
Part of the Lecture Notes in Physics book series (LNP, volume 718)

Abstract

Many quantum condensed matter systems are strongly correlated and strongly interacting fermionic systems, which cannot be treated perturbatively. However, physics which emerges in the low-energy corner does not depend on the complicated details of the system and is relatively simple.

Keywords

Fermi Surface Momentum Space Topological Charge Vortex Line Quantum Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Georgi, S.L. Glashow: Phys. Rev. Lett. 32, 438 (1974)CrossRefADSGoogle Scholar
  2. 2.
    H. Georgi, H.R. Quinn, S. Weinberg: Phys. Rev. Lett. 33, 451 (1974)CrossRefADSGoogle Scholar
  3. 3.
    G.E. Volovik, L.P. Gorkov: Sov. Phys. JETP 61, 843 (1985)Google Scholar
  4. 4.
    D. Vollhardt, P. Wölfle: The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990)Google Scholar
  5. 5.
    N.D. Mermin: Rev. Mod. Phys. 51, 591 (1979)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    G.E. Volovik: The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)MATHGoogle Scholar
  7. 7.
    P. Horava: Phys. Rev. Lett. 95, 016405 (2005)CrossRefADSGoogle Scholar
  8. 8.
    V.A. Khodel, V.R. Shaginyan: JETP Lett. 51, 553 (1990)ADSGoogle Scholar
  9. 9.
    G.E. Volovik: JETP Lett. 53, 222 (1991)ADSGoogle Scholar
  10. 10.
    V.R. Shaginyan, A.Z. Msezane, M.Ya. Amusia: Phys. Lett. A 338, 393 (2005)CrossRefADSGoogle Scholar
  11. 11.
    V.A. Khodel, J.W. Clark, M.V. Zverev: ‘Thermodynamic properties of Fermi systems with flat single-particle spectra’ (cond-mat/0502292)Google Scholar
  12. 12.
    V.A. Khodel, M.V. Zverev, V.M. Yakovenko: Phys. Rev. Lett. 95, 236402 (2005)CrossRefADSGoogle Scholar
  13. 13.
    G.E. Volovik: JETP Lett. 59, 830 (1994)ADSGoogle Scholar
  14. 14.
    S. Sachdev: Quantum Phase Transitions (Cambridge University Press, Cambridge, 2003)Google Scholar
  15. 15.
    I.M. Lifshitz: Sov. Phys. JETP 11, 1130 (1960); I.M. Lifshitz, M.Y. Azbel, M.I. Kaganov: Electron Theory of Metals (Consultant Press, New York, 1972)Google Scholar
  16. 16.
    G.E. Volovik: Exotic Properties of Superfluid 3He (World Scientific, Singapore, 1992)Google Scholar
  17. 17.
    F.R. Klinkhamer, G.E. Volovik: JETP Lett. 80, 343 (2004)CrossRefADSGoogle Scholar
  18. 18.
    F.R. Klinkhamer, G.E. Volovik: Int. J. Mod. Phys. A 20, 2795 (2005)MATHCrossRefADSGoogle Scholar
  19. 19.
    V. Gurarie, L. Radzihovsky, A. V. Andreev: Phys. Rev. Lett. 94, 230403 (2005)CrossRefADSGoogle Scholar
  20. 20.
    S.S. Botelho, C.A.R. Sa de Melo: J. Low Temp. Phys. 140, 409 (2005)CrossRefADSGoogle Scholar
  21. 21.
    S.S. Botelho, C.A.R. Sa de Melo: Phys. Rev. B 71, 134507 (2005)CrossRefADSGoogle Scholar
  22. 22.
    L.S. Borkowski, C.A.R. Sa de Melo: “From BCS to BEC superconductivity: Spectroscopic consequences” (cond-mat/9810370)Google Scholar
  23. 23.
    R.D. Duncan, C.A.R. Sa de Melo: Phys. Rev. B 62, 9675 (2000)CrossRefADSGoogle Scholar
  24. 24.
    X.G. Wen, A. Zee: Phys. Rev. B 66, 235110 (2002)CrossRefADSGoogle Scholar
  25. 25.
    E. Gubankova: “Conditions for existence of neutral strange quark matter” (hep-ph/0507291) E. Gubankova, E. Mishchenko, F. Wilczek: Phys. Rev. Lett. 94, 110402 (2005) K. Rajagopal, A. Schmitt: Phys. Rev. D73, 045003 (2006) R. Casalbuoni: “Color Superconductivity in High Density QCD' (hepph/0512198)CrossRefADSGoogle Scholar
  26. 26.
    N. Bergeal, J. Lesueur, M. Aprili, G. Faini, J. P. Contour, B. Leridon: “Direct test of pairing fluctuations in the pseudogap phase of underdoped cuprates” (cond-mat/0601265)Google Scholar
  27. 27.
    M.V. Sadovskii: “Models of the pseudogap state in high temperature superconductors” (cond-mat/0408489)Google Scholar
  28. 28.
    E.Z. Kuchinskii, M.V. Sadovskii: JETP 103, 415 (2006)CrossRefADSGoogle Scholar
  29. 29.
    J. von Neumann, E. Wigner: Phys. Zeit. 30, 467 (1929)Google Scholar
  30. 30.
    A.J. Stone: Proc. R. Soc. London A 351, 141 (1976)ADSCrossRefGoogle Scholar
  31. 31.
    V.I. Arnold: Mathematical Method in Classical Mechanics (Nauka, Moscow, 1979, in Russian) (Springer-Verlag, 1989)Google Scholar
  32. 32.
    M.V. Berry: Proc. R. Soc. London A 392, 45 (1984)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    S.P. Novikov: Sov. Phys. Math. Dokl. 23, 298 (1981)MATHGoogle Scholar
  34. 34.
    G.E. Volovik: JETP Lett. 46, 98 (1987)ADSGoogle Scholar
  35. 35.
    H.B. Nielsen, M. Ninomiya: Nucl. Phys. B 185, 20 (1981); Nucl. Phys. B 193, 173 (1981)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    X.G. Wen: Phys. Rev. Lett. 88, 011602 (2002)CrossRefADSGoogle Scholar
  37. 37.
    F.R. Klinkhamer: Int. J. Mod. Phys. A21, 161 (2006); F.R. Klinkhamer: Nucl. Phys. B (Proc. Suppl.) 149, 209 (2005)ADSGoogle Scholar
  38. 38.
    K. Kajantie, M. Laine, K. Rummukainen, M. Shaposhnikov: Phys. Rev. Lett. 77, 2887 (1996)CrossRefADSGoogle Scholar
  39. 39.
    S.L. Adler: “Anomalies to all orders”. In: Fifty Years of Yang-Mills Theory, ed. by G. 't Hooft (World Scientific, 2006)Google Scholar
  40. 40.
    E.I. Blount: Phys. Rev. B 32, 2935 (1985)CrossRefADSGoogle Scholar
  41. 41.
    H.J.H. Smilde, A.A. Golubov, Ariando, G. Rijnders, J.M. Dekkers, S. Harkema, D.H.A. Blank, H. Rogalla, H. Hilgenkamp, Phys. Rev. Lett. 95, 257001 (2005)CrossRefADSGoogle Scholar
  42. 42.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov: Nature 438, 197 (2005)CrossRefADSGoogle Scholar
  43. 43.
    S.G. Sharapov, V.P. Gusynin, H. Beck: Phys. Rev. B 69, 075104 (2004)CrossRefADSGoogle Scholar
  44. 44.
    K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Falko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim: Nature Physics 2, 177 (2006)CrossRefADSGoogle Scholar
  45. 45.
    E. McCann, V.I. Fal'ko: Phys. Rev. Lett. 96, 086805 (2006)CrossRefADSGoogle Scholar
  46. 46.
    M. Sato: Phys. Rev. B73, 214502 (2006)ADSGoogle Scholar
  47. 47.
    A.A. Kordyuk, S.V. Borisenko, A.N. Yaresko, S.-L. Drechsler, H. Rosner, T.K. Kim, A. Koitzsch, K.A. Nenkov, M. Knupfer, J. Fink, R. Follath, H. Berger, B. Keimer, S. Ono, Yoichi Ando: Phys. Rev. B 70, 214525 (2004); S.V. Borisenko, A.A. Kordyuk, V. Zabolotnyy, J. Geck, D. Inosov, A. Koitzsch, J. Fink, M. Knupfer, B. Buechner, V. Hinkov, C.T. Lin, B. Keimer, T. Wolf, S.G. Chiuzbaian, L. Patthey, R. Follath: Phys. Rev. Lett. 96, 117004 (2006); T. Yamasaki, K. Yamazaki, A. Ino, M. Arita, H. Namatame, M. Taniguchi, A. Fujimori, Z.-X. Shen, M. Ishikado, S. Uchida: “Unmasking the nodal quasiparticle dynamics in cuprate superconductors using low-energy photoemission,” (cond-mat/0603006)CrossRefADSGoogle Scholar
  48. 48.
    G.E. Volovik: JETP Lett. 73, 162 (2001)CrossRefADSGoogle Scholar
  49. 49.
    F.R. Klinkhamer: Phys. Rev. D 73, 057301 (2006)CrossRefADSGoogle Scholar
  50. 50.
    G.E. Volovik: JETP Lett. 58, 469 (1993)ADSGoogle Scholar
  51. 51.
    H. Balci, R.L. Greene: Phys. Rev. Lett. 93, 067001 (2004)CrossRefADSGoogle Scholar
  52. 52.
    W. Yu, B. Liang, R.L. Greene: Phys. Rev. B 72, 212512 (2005)CrossRefADSGoogle Scholar
  53. 53.
    K. Ishikawa, T. Matsuyama: Z. Phys. C 33, 41 (1986) K. Ishikawa, T. Matsuyama: Nucl. Phys. B 280, 523 (1987)CrossRefADSGoogle Scholar
  54. 54.
    G.E. Volovik, V.M. Yakovenko: J. Phys.: Condens. Matter 1, 5263 (1989)CrossRefADSGoogle Scholar
  55. 55.
    G.E. Volovik: “Fractional statistics and analogues of quantum Hall effect in superfluid 3He. lms”. In: Quantum Fluids and Solids - 1989 ed. by G.G. Ihas, Y. Takano (AIP Conference Proceedings, 1989) 194, pp. 136–146Google Scholar
  56. 56.
    Su-Peng Kou, Xiao-Liang Qi, Zheng-Yu Weng: Phys. Rev. B 72, 165114 (2005)CrossRefADSGoogle Scholar
  57. 57.
    D.T. Son, A.R. Zhitnitsky: Phys. Rev. D 70, 074018 (2004)CrossRefADSGoogle Scholar
  58. 58.
    O. Vafek and A. Melikyan: Phys. Rev. Lett. 96, 167005 (2006)CrossRefADSGoogle Scholar
  59. 59.
    G.E. Volovik: JETP Lett. 61, 958 (1995)ADSGoogle Scholar
  60. 60.
    E.I. Rashba: “Spin-orbit coupling and spin transport” (cond-mat/0507007)Google Scholar
  61. 61.
    S.D.M. Haldane: Phys. Rev. Lett. 93, 206602 (2004)CrossRefADSGoogle Scholar
  62. 62.
    G.E. Volovik: JETP Lett. 64, 845 (1996)CrossRefADSGoogle Scholar
  63. 63.
    R. Jackiw, P. Rossi: Nucl. Phys. B 190, 681, (1981)CrossRefADSGoogle Scholar
  64. 64.
    M. Stone: Ann. Phys. 207, 38 (1991) X.G. Wen: Phys. Rev. B 43, 11025 (1991)CrossRefADSGoogle Scholar
  65. 65.
    M. Stone, R. Roy: Phys. Rev. B 69, 184511 (2004)CrossRefADSGoogle Scholar
  66. 66.
    J. Dziarmaga: Phys. Rev. Lett. 95 245701 (2005)CrossRefADSGoogle Scholar
  67. 67.
    J.R. Hook, H.E. Hall: J. Phys. C 12, 783 (1979) G.E. Volovik: JETP Lett. 27, 573 (1978)CrossRefADSGoogle Scholar
  68. 68.
    D.N. Paulson, M. Krusius, J.C. Wheatley: Phys. Rev. Lett. 36, 1322 (1976)CrossRefADSGoogle Scholar
  69. 69.
    A.G. Abanov, F. Franchini: Phys. Lett. A 316, 342 (2003)MATHCrossRefADSGoogle Scholar
  70. 70.
    M. Fioroni, G. Immirzi: “How and why the wave function collapses after a measurement” (gr-qc/9411044)Google Scholar
  71. 71.
    W.H. Zurek, U. Dorner, P. Zoller: Phys. Rev. Lett. 95, 105701 (2005)CrossRefADSGoogle Scholar
  72. 72.
    M. Grady: “Spontaneous symmetry breaking as the mechanism of quantum measurement” (hep-th/9409049)Google Scholar
  73. 73.
    Ya.G. Sinai: Theory of Phase Transitions, International series in natural philosophy (Pergamon Press, 1983)Google Scholar
  74. 74.
    P.G. Grinevich, G.E. Volovik: J. Low Temp. Phys. 72, 371 (1988); M.M. Salomaa, G.E. Volovik: Phys. Rev. 37, 9298 (1988); M.M. Salomaa, G.E. Volovik: J. Low Temp. Phys. 74, 319 (1989)CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyEspooFinland
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations