Algorithms for Learning Function Distinguishable Regular Languages

  • Henning Fernau
  • Agnes Radl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2396)

Abstract

Function distinguishable languages were introduced as a new methodology of defining characterizable subclasses of the regular languages which are learnable from text. Here, we give details on the implementation and the analysis of the corresponding learning algorithms. We also discuss problems which might occur in practical applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Angluin. Inference of reversible languages. J. of the ACM, 29(3):741–765, 1982.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Information and Computation, 142(2):182–206, 1998.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2nd. edition, 2001.Google Scholar
  4. 4.
    H. Fernau. Identification of function distinguishable languages. In H. Arimura, S. Jain, and A. Sharma, editors, Proceedings of the 11th International Conference Algorithmic Learning Theory ALT 2000, volume 1968 of LNCS/LNAI, pages 116–130. Springer, 2000.CrossRefGoogle Scholar
  5. 5.
    H. Fernau. k-gram extensions of terminal distinguishable languages. In International Conference on Pattern Recognition (ICPR 2000), volume 2, pages 125–128. IEEE/IAPR, IEEE Press, 2000.CrossRefGoogle Scholar
  6. 6.
    H. Fernau. Approximative learning of regular languages. In L. Pacholski and P. Ruzička, editors, SOFSEM’01; Theory and Practice of Informatics, volume 2234 of LNCS, pages 223–232. Springer, 2001.CrossRefGoogle Scholar
  7. 7.
    H. Fernau. Learning XML grammars. In P. Perner, editor, Machine Learning and Data Mining in Pattern Recognition MLDM’01, volume 2123 of LNCS/LNAI, pages 73–87. Springer, 2001.CrossRefGoogle Scholar
  8. 8.
    H. Fernau. Parallel communicating grammar systems with terminal transmission. Acta Informatica, 37:511–540, 2001.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    H. Fernau. Learning tree languages from text. In J. Kivinen, editor, Conference on Learning Theory COLT’02, to appear in the LNCS/LNAI series of Springer.Google Scholar
  10. 10.
    E. M. Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.CrossRefMATHGoogle Scholar
  11. 11.
    J. Gregor. Data-driven inductive inference of finite-state automata. International Journal of Pattern Recognition and Artificial Intelligence, 8(1):305–322, 1994.CrossRefGoogle Scholar
  12. 12.
    C. de la Higuera. Current trends in grammatical inference. In F. J. Ferri et al., editors, Advances in Pattern Recognition, Joint IAPR International Workshops SSPR+SPR’2000, volume 1876 of LNCS, pages 28–31. Springer, 2000.Google Scholar
  13. 13.
    V. Radhakrishnan. Grammatical Inference from Positive Data: An Effective Integrated Approach. PhD thesis, Department of Computer Science and Engineering, Indian Institute of Technology, Bombay (India), 1987.Google Scholar
  14. 14.
    V. Radhakrishnan and G. Nagaraja. Inference of regular grammars via skeletons. IEEE Transactions on Systems, Man and Cybernetics, 17(6):982–992, 1987.MathSciNetGoogle Scholar
  15. 15.
    R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms. J. of the ACM, 31:245–281, 1984.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Henning Fernau
    • 1
  • Agnes Radl
    • 2
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of NewcastleCallaghanAustralia
  2. 2.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations