Abstract

The solution for the parameters of a nonlinear mapping in a metric multidimensional scaling by transformation, in which a stress criterion is optimised, satisfies a nonlinear eigenvector equation, which may be solved iteratively. This can be cast in a kernel-based framework in which the configuration of training samples in the transformation space may be found iteratively by successive linear projections, without the need for gradient calculations. A new data sample can be projected using knowledge of the kernel and the final configuration of data points.

Keywords

multidimensional scaling kernel representation nonlinear feature extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimisation. Theory and Examples. Springer-Verlag, New York, 2000.Google Scholar
  2. 2.
    N. Cristianini and J. Shawe-Taylor. An introduction to support vector machines. Cambridge University Press, Cambridge, 2000.Google Scholar
  3. 3.
    W. R. Dillon and M. Goldstein. Multivariate Analysis Methods and Applications. John Wiley and Sons, New York, 1984.MATHGoogle Scholar
  4. 4.
    W. J. Heiser. Convergent computation by iterative majorization: theory and applications in multidimensional data analysis. In W. J. Krzanowski, editor, Recent Advances in Descriptive Multivariate Analysis, pages 157–189. Clarendon Press, Oxford, 1994.Google Scholar
  5. 5.
    W. L. G. Koontz and K. Fukunaga. A nonlinear feature extraction algorithm using distance information. IEEE Transactions on Computers, 21(1):56–63, 1972.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Lerner, H. Guterman, M. Aladjem, and I. Dinstein. A comparative study of neural network based feature extraction paradigms. Pattern Recognition Letters, 120:7–14, 1999.CrossRefGoogle Scholar
  7. 7.
    B. Lerner, H. Guterman, M. Aladjem, I. Dinstein, and Y. Romem. On pattern classification with Sammon’s nonlinear mapping-an experimental study. Pattern Recognition, 31(4):371–381, 1998.CrossRefGoogle Scholar
  8. 8.
    D. Lowe and M. Tipping. Feed-forward neural networks and topographic mappings for exploratory data analysis. Neural Computing and Applications, 4:83–95, 1996.CrossRefGoogle Scholar
  9. 9.
    J. Mao and A. K. Jain. Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks, 6(2):296–317, 1995.CrossRefGoogle Scholar
  10. 10.
    R. Mathar and R. Meyer. Algorithms in convex analysis to fit lp-distance matrices. Journal of Multivariate Analysis, 51:102–120, 1994.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. Meyer. Nonlinear eigenvector algorithms for local optimisation in multivariate data analysis. Linear Algebra and its Applications, 264:225–246, 1997.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes. The Art of Scientific Computing. Cambridge University Press, Cambridge, second edition, 1992.Google Scholar
  13. 13.
    R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.MATHGoogle Scholar
  14. 14.
    J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, 18(5):401–409, 1969.CrossRefGoogle Scholar
  15. 15.
    B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.CrossRefGoogle Scholar
  16. 16.
    A. R. Webb. Multidimensional scaling by iterative majorisation using radial basis functions. Pattern Recognition, 28(5):753–759, 1995.CrossRefGoogle Scholar
  17. 17.
    A. R. Webb. Radial basis functions for exploratory data analysis: an iterative majorisation approach for Minkowski distances based on multidimensional scaling. Journal of Classification, 14(2):249–267, 1997.MATHCrossRefGoogle Scholar
  18. 18.
    A. R. Webb. Statistical Pattern Recognition. Arnold, London, 1999.Google Scholar
  19. 19.
    A. R. Webb. A kernel approach to metric multidimensional scaling. In preparation, 2002.Google Scholar
  20. 20.
    C. K. I. Williams. On a connection between kernel pca and metric multidimensional scaling. Machine Learning, 46(1/3):11–19, 2001.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Andrew Webb
    • 1
  1. 1.QinetiQMalvern

Personalised recommendations