Successive Projection Graph Matching

  • Barend Jacobus van Wyk
  • Michaël Antonie van Wyk
  • Hubert Edward Hanrahan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2396)

Abstract

The Successive Projection Graph Matching (SPGM) algorithm, capable of performing full- and sub-graph matching, is presented in this paper. Projections Onto Convex Sets (POCS) methods have been successfully applied to signal processing applications, image enhancement, neural networks and optics. The SPGM algorithm is unique in the way a constrained cost function is minimized using POCS methodology. Simulation results indicate that the SPGM algorithm compares favorably to other well-known graph matching algorithms.

Keywords

Graph Match Signal Processing Application Algorithm Successive Projection Pattern Recognition Letter Maximal Common Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching, IEEE Trans. Patt. Anal. Machine Intell, Vol. 18 (1996) 377–388CrossRefGoogle Scholar
  2. 2.
    You, M., Wong, K. C.: An Algorithm for Graph Optimal Isomorphism, Proc. ICPR. (1984) 316–319Google Scholar
  3. 3.
    Tsai, W.-H., Fu, K.-S.: Error-Correcting Isomorphisms of Attributed Relation Graphs for Pattern Recognition, IEEE Trans. Syst. Man Cybern., Vol. 9 (1997) 757–768CrossRefGoogle Scholar
  4. 4.
    Tsai, W.-H., Fu, K.-S.: Subgraph Error-Correcting Isomorphisms for Syntactic Pattern Recognition, IEEE Trans. Systems, Man, Cybernetics, Vol. 13 (1983) 48–62MATHMathSciNetGoogle Scholar
  5. 5.
    Depiero, F., Trived, M., Serbin, S.: Graph Matching using a Direct Classification of Node Attendance, Pattern Recognition, Vol. 29, No. 6, (1996) 1031–1048CrossRefGoogle Scholar
  6. 6.
    Eshera, M. A., Fu, K.-S.: A Graph Distance measure for Image Analysis, IEEE Trans. Systems, Man, Cybernetics, Vol. 13 (1984) 398–407Google Scholar
  7. 7.
    Bunke, H., Shearer, K.: A Graph Distance Metric Based on the Maximal Common Subgraph, Pattern Recognition Letters, Vol. 19 (1998) 255–259MATHCrossRefGoogle Scholar
  8. 8.
    Bunke, H., Messmer, B.: Recent Advances in Graph Matching, Int. J. Pattern Recognition Artificial Intell. Vol. 11, No. 1 (1997) 169–203CrossRefGoogle Scholar
  9. 9.
    Allen, R., Cinque, L., Tanimoto, S., Shapiro, L., Yasuda, D.: A Parallel Algorithm for Graph Matching and Its MarPlas Implementation, IEEE Trans. Parallel and Distb. Syst., Vol. 8, No. 5 (1997) 490–501CrossRefGoogle Scholar
  10. 10.
    Almohamad, H. A. L.: Polynomial Transform for Matching Pairs of Weighted Graphs, Appl. Math. Modelling, Vol. 15, No. 4 (1991) 216–222MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Umeyama, S.: An Eigendecomposition Approach to Weighted Graph Matching Problems, IEEE Trans. Patt. Anal. Machine Intell., Vol. 10, No. 5 (1988) 695–703MATHCrossRefGoogle Scholar
  12. 12.
    Cross, A. D. J., Wilson, C., Hancock, E. R.: Inexact Matching Using Genetic Search, Pattern Recognition, Vol. 30, No. 6 (1997) 953–970CrossRefGoogle Scholar
  13. 13.
    Finch, A. M., Wilson, R. C., Hancock, R.: Symbolic Matching with the EM Algorithm, Pattern Recognition, Vol. 31, No. 11 (1998) 1777–1790CrossRefGoogle Scholar
  14. 14.
    Williams, M. L., Wilson, R. C., Hancock, E. R.: Multiple Graph Matching with Bayesian Inference, Pattern Recognition Letters, Vol. 18 (1997) 1275–1281CrossRefGoogle Scholar
  15. 15.
    Cross, A. D. J., Hancock, E. R.: Graph Matching with a Dual Step EM Algorithm, IEEE Trans. Patt. Anal. Machine Intell., Vol. 20, No. 11 (1998) 1236–1253CrossRefGoogle Scholar
  16. 16.
    Wilson, R. C., Hancock, E. R.: A Bayesian Compatibility Model for Graph Matching, Pattern Recognition Letters, Vol. 17 (1996) 263–276.CrossRefGoogle Scholar
  17. 17.
    Hummel, R. A., Zucker, S. W.: On the Foundations of Relaxation Labelling Processes, IEEE Trans. Patt. Anal. Machine Intell., Vol. 5, No. 3 (1983) 267–286MATHCrossRefGoogle Scholar
  18. 18.
    Faugeras, O. D., Price, K. E.: Semantic Description of Aerial Images Using Stochastic Labeling, IEEE Trans. Patt. Anal. Machine Intell., Vol. 3, No. 6 (1981) 633–642Google Scholar
  19. 19.
    van Wyk, M. A., Clark, J.: An Algorithm for Approximate Least-Squares Attributed Graph Matching, in Problems in Applied Mathematics and Computational Intelligence, N. Mastorakis (ed.), World Science and Engineering Society Press, (2001) 67–72Google Scholar
  20. 20.
    van Wyk, B. J., van Wyk, M. A., Virolleau, F.: The CGGM Algorithm and its DSP implementation, Proc. 3rd European DSP Conference on Education and Research, ESIEE-Paris, 20–21 September (2000)Google Scholar
  21. 21.
    Stark, H., Yang, Y.: Vector Space Projections: A Numerical Approach to Signal and Image Processing, Neural Nets and Optics., John Wiley and Sons (1998)Google Scholar
  22. 22.
    Youla, D. C.: Mathematical theory of image restoration by the method of convex projections, Chapter 2, in Image Recovery: Theory and Applications, H. Stark (ed.), Academic Press, Orlando, FL (1987)Google Scholar
  23. 23.
    Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Barend Jacobus van Wyk
    • 1
    • 3
  • Michaël Antonie van Wyk
    • 2
  • Hubert Edward Hanrahan
    • 3
  1. 1.Kentron, a division of DenelCenturionSouth Africa
  2. 2.Rand Afrikaans UniversityJohannesburgSouth Africa
  3. 3.University of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations