A Metamodel Based Optimisation Algorithm for Metal Forming Processes

  • M.H.A. Bonte
  • A.H. van den Boogaard
  • J. Huétink

Summary

Cost saving and product improvement have always been important goals in the metal forming industry. To achieve these goals, metal forming processes need to be optimised. During the last decades, simulation software based on the Finite Element Method (FEM) has significantly contributed to designing feasible processes more easily. More recently, the possibility of coupling FEM to mathematical optimisation algorithms is offering a very promising opportunity to design optimal metal forming processes instead of only feasible ones. However, which optimisation algorithm to use is still not clear.

In this paper, an optimisation algorithm based on metamodelling techniques is proposed for optimising metal forming processes. The algorithm incorporates nonlinear FEM simulations which can be very time consuming to execute. As an illustration of its capabilities, the proposed algorithm is applied to optimise the internal pressure and axial feeding load paths of a hydroforming process. The product formed by the optimised process outperforms products produced by other, arbitrarily selected load paths. These results indicate the high potential of the proposed algorithm for optimising metal forming processes using time consuming FEM simulations.

Key words

optimisation metal forming finite element method meta-modelling hydroforming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castro, C., António, C., Sousa, L., “Optimisation of shape and process parameters in metal forging using genetic algorithms”, International Journal of Materials Processing Technology, Vol. 146, 356–364, 2004.CrossRefGoogle Scholar
  2. Emmerich, M., Giotis, A., Özdemir, M., Bäck, T., Giannakoglou, K., “Metamodel-assisted evolution strategies”, in Proceedings of the International Conference on Parallel Problem Solving from Nature, 2002.Google Scholar
  3. Fourment, L., Do, T., Habbal, A., Bouzaiane, M., “Gradient, non-gradient and hybrid algorithms for optimizing 2D and 3D forging sequences”, in Proceedings of ESAFORM, Cluj-Napoca, Romania, 2005.Google Scholar
  4. Haftka, R., Gürdal, Z., Elements of structural optimization, Kluwer academic publishers, Dordrecht, Netherlands, 3rd ed., 1992, ISBN 0-7923-1504-9.MATHGoogle Scholar
  5. Jansson, T., Optimization of Sheet Metal Forming Processes, Licentiate thesis, Universitet Linköping, Linköping, Sweden, 2002.Google Scholar
  6. Jansson, T., Andersson, A., Nilsson, L., “Optimization of draw-in for an automotive sheet metal part – an evaluation using surrogate models and response surfaces”, Journal of Materials Processing Technology, Vol. 159, 426–234, 2005.CrossRefGoogle Scholar
  7. Kleijnen, J., Sargent, R., “A methodology for fitting and validating metamodels in simulation”, European Journal of Operational Research, Vol. 120, 14–29, 2000.MATHCrossRefGoogle Scholar
  8. Kleinermann, J. P., Ponthot, J. P., “Parameter identification and shape/process optimization in metal forming simulation”, Journal of Materials Processing Technology, Vol. 139(1–3), 521–526, 2003.CrossRefGoogle Scholar
  9. Kleijnen, J., Van Beers, W., “Application-driven sequential designs for simulation experiments: Kriging metamodelling”, European Journal of Operational Research, submitted in 2004.Google Scholar
  10. Koehler, J., Owen, A., Handbook of Statistics, chap. Computer Experiments, 261–308, Elsevier Science, New York, USA, 1996.Google Scholar
  11. Lin, Z., Juchen, X., Xinyun, W., Guoan, H., “Optimization of die profile for improving die life in the hot extrusion process”, Journal of Materials Processing Technology, Vol. 142(3), 659–664, 2003.CrossRefGoogle Scholar
  12. Lophaven, S., Nielsen, H., Søndergaard, J., “Aspects of the MATLAB Toolbox DACE”, Technical Report IMM-REP-2002-13, Technical University of Denmark – Department of Informatics and Mathematical Modelling, Lyngby, Denmark, 2002.Google Scholar
  13. Lophaven, S., Nielsen, H., Søndergaard, J., “DACE – A MATLAB Kriging Toolbox”, Technical Report IMM-TR-2002-12, Technical University of Denmark – Department of Informatics and Mathematical Modelling, Lyngby, Denmark, 2002.Google Scholar
  14. Martin, J., Simpson, T., “A study on the use of Kriging models to approximate deterministic computer models”, in Proceedings of the ASME Design Engineering Technical Conferences DETC, 2003.Google Scholar
  15. McKay, M., Beckman, R., Conover, W., “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code”, Technometrics, Vol. 21, 239–245, 1979.MATHCrossRefMathSciNetGoogle Scholar
  16. Myers, R., Montgomery, D., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley and Sons, Inc., New York, USA, 2nd ed., 2002, ISBN 0-471-41255-4.Google Scholar
  17. Naceur, H., Guo, Y. Q., Batoz, J. L., Knopf-Lenoir, C., “Optimization of drawbead restraining forces and drawbead design in sheet metal forming process”, International Journal of Mechanical Sciences, Vol. 43(10), 2407–2434, 2001.MATHCrossRefGoogle Scholar
  18. Naceur, H., Ben-Elechi, S., Knopf-Lenoir, C., Batoz, J., “Response surface methodology for the design of sheet metal forming parameters to control springback effects using the inverse approach”, in Proceedings of NUMIFORM, Columbus OH, USA, 2004.Google Scholar
  19. Nielsen, H., “DACE, A MATLAB Kriging toolbox”, http://www.imm.dtu.dk/ hbn/dace/.Google Scholar
  20. Papalambros, P. Y., Wilde, D. J., Principles of optimal design, Cambridge University Press, New York, USA, 2000, ISBN 0-521-62727.MATHGoogle Scholar
  21. Sacks, J., Schiller, S., Welch, W., “Design for computer experiments”, Technometrics, Vol. 31, 41–47, 1989.CrossRefMathSciNetGoogle Scholar
  22. Sacks, J., Welch, W., Mitchell, T., Wynn, H., “Design and analysis of computer experiments”, Statistical Science, Vol. 4, 409–423, 1989.MATHMathSciNetGoogle Scholar
  23. Santner, T., Williams, B., Notz, W., The Design and Analysis of Computer Experiments, Springer-Verlag, New York, USA, 2003, ISBN 0-387-95420-1.MATHGoogle Scholar
  24. Schenk, O., Hillmann, M., “Optimal design of metal forming die surfaces with evolution strategies”, Computers and Structures, Vol. 82, 1695–1705, 2004.CrossRefGoogle Scholar
  25. Simpson, T., Peplinski, J., Koch, P., Allen, J., “Metamodels for computer-based engineering design: Survey and recommendations”, Engineering with Computers, Vol. 17, 129–150, 2001.MATHCrossRefGoogle Scholar
  26. van Beers, W., Kleijnen, J., “Kriging interpolation in simulation: A survey”, in R. Ingalls, M. Rossetti, J. Smith, B. Peters, eds., Proceedings of the 2004 Winter Simulation Conference, 2004.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M.H.A. Bonte
    • 1
  • A.H. van den Boogaard
    • 1
  • J. Huétink
    • 1
  1. 1.University of Twente, Faculty of Engineering TechnologyThe Netherlands

Personalised recommendations