Epoxide Hydrolases and Their Synthetic Applications

  • Romano V. A. Orru
  • Alain Archelas
  • Roland Furstoss
  • Kurt Faber
Part of the Advances in Biochemical Engineering/Biotechnology book series (volume 63)


Chiral epoxides and 1,2-diols, which are central building blocks for the asymmetric synthesis of bioactive compounds, can be obtained by using enzymes — i.e. epoxide hydrolases — which catalyse the enantioselective hydrolysis of epoxides. These biocatalysts have recently been found to be more widely distributed in fungi and bacteria than previously expected. Sufficient sources from bacteria, such as Rhodococcus and Nocardia spp., or fungi, as for instance Aspergillus and Beauveria spp., have now been identified. The reaction proceeds via an Sn2-specific opening of the epoxide, leading to the formation of the corresponding trans-configured 1,2-diol. For the resolution of racemic monosubstituted and 2,2- or 2,3-disubstituted substrates, various fungi and bacteria have been shown to possess excellent enantioselectivities. Additionally, different methods, which lead to the formation of the optically pure product diol in a chemical yield far beyond the 50% mark (which is intrinsic to classic kinetic resolutions), are discussed. In addition, the use of non-natural nucleophiles such as azides or amines provides access to enantiomerically enriched vicinal azido- and amino-alcohols. The synthetic potential of these enzymes for asymmetric synthesis is illustrated with recent examples, describing the preparation of some biologically active molecules.


Epoxide Vicinal diol Epoxide hydrolase Biocatalysis Enantio-convergent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schurig V, Betschinger F (1992) Chem Rev 92:873CrossRefGoogle Scholar
  2. 2.
    Kolb HC, VanNieuenhze MS, Sharpless KB (1994) Chem Rev 94:2483CrossRefGoogle Scholar
  3. 3.
    Johnson RA, Sharpless KB (1993) In: Ojima I (ed) Catalytic asymmetric synthesis. Verlag Chemie, New York, p 103Google Scholar
  4. 4.
    Jacobsen EN, Zhang W, Muci AR, Ecker JR, Deng L (1991) J Am Chem Soc 113:7063CrossRefGoogle Scholar
  5. 5.
    Katsuki T (1995) Coord Chem Rev 140:189CrossRefGoogle Scholar
  6. 6.
    Konishi K, Oda K, Nishida K, Aida, T, Inoue S (1992) J Am Chem Soc 114:1313CrossRefGoogle Scholar
  7. 7.
    Hodgson DM, Gibbs AR, Lee GP (1996) Tetrahedron 52:14361CrossRefGoogle Scholar
  8. 8.
    Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN (1997) Science 277:936CrossRefGoogle Scholar
  9. 9.
    de Bont JAM (1993) Tetrahedron: Asymmetry 4:1331CrossRefGoogle Scholar
  10. 10.
    Leak DJ, Aikens PJ, Seyed-Mahmoudian M (1992) Trends Biotechnol 10:256CrossRefGoogle Scholar
  11. 11.
    Onumonu AN, Colocoussi A, Matthews C, Woodland MP, Leak DJ (1994) Biocatalysis 10:211CrossRefGoogle Scholar
  12. 12.
    Besse P, Veschambre H (1994) Tetrahedron 50:8885CrossRefGoogle Scholar
  13. 13.
    Pedragosa-Moreau S, Archelas A, Furstoss R (1995) Bull Soc Chim Fr 132:769Google Scholar
  14. 14.
    Mischitz M, Kroutil W, Wandel U, Faber K (1995) Tetrahedron: Asymmetry 6:1261CrossRefGoogle Scholar
  15. 15.
    Kim M-J, Choi YK (1992) J Org Chem 57:1605CrossRefGoogle Scholar
  16. 16.
    Ader U, Schneider MP (1992) Tetrahedron: Asymmetry 3:205CrossRefGoogle Scholar
  17. 17.
    Onda M, Motosugi K, Nakajima H (1990) Agric Biol Chem 54:3031Google Scholar
  18. 18.
    Allison N, Skinner AJ, Cooper RA (1983) J Gen Microbiol 129:1283Google Scholar
  19. 19.
    Casy G, Lee TV, Lovell H (1992) Tetrahedron Lett 33:817CrossRefGoogle Scholar
  20. 20.
    Nakamura K, Yoneda T, Miyai T, Ushio K, Oka S, Ohno A (1988) Tetrahedron Lett 29:2453CrossRefGoogle Scholar
  21. 21.
    Furuhashi K (1986) Chem Econ Eng Rev 18(7/8):21Google Scholar
  22. 22.
    Franssen MCR (1994) Biocatalysis 10:87CrossRefGoogle Scholar
  23. 23.
    Geigert J, Neidleman SL, Liu T-NE, De Witt SK, Panschar BM, Dalietos DJ, Siegel ER (1983) Appl Environ Microbiol 45:1148Google Scholar
  24. 24.
    Allain EJ, Hager LP, Deng L, Jacobsen EN (1993) J Am Chem Soc 115:4415CrossRefGoogle Scholar
  25. 25.
    Oesch F (1972) Xenobiotica 3:305CrossRefGoogle Scholar
  26. 26.
    Berti G (1986) In: Schneider MP (ed) Enzymes as catalysts in organic synthesis. Reidel, Dordrecht, NATO ASI Series C 178:349Google Scholar
  27. 27.
    Faber K, Mischitz M, Kroutil W (1996) Acta Chem Scand 50:249CrossRefGoogle Scholar
  28. 28.
    Archelas A, Furstoss R(1997) Annu Rev Microb 51:491CrossRefGoogle Scholar
  29. 29.
    Archer IVJ (1997) Tetrahedron 53:15617CrossRefGoogle Scholar
  30. 31.
    Lu AYH, Miwa GT (1980) Annu Rev Pharmacol Toxicol 20:513CrossRefGoogle Scholar
  31. 32.
    de Bont JAM, van Dijken JP, van Ginkel KG (1982) Biochim Biophys Acta 714:465Google Scholar
  32. 33.
    Weijers CAGM, Jongejan H, Franssen MCR, de Groot A, de Bont JAM (1995) Appl Microbiol Biotechnol 42:775CrossRefGoogle Scholar
  33. 34.
    Niehaus WG, Kisic A, Torkelson A, Bednarczyk DJ, Schroepfer GJ (1970) J Biol Chem 245:3802Google Scholar
  34. 35.
    Michaels BC, Ruettinger RT, Fulco A (1980) Biochem Biophys Res Commun 92:1189CrossRefGoogle Scholar
  35. 36.
    Hartmann, GR, Frear, DS (1963) Biochem Biophys Res Commun 10:366CrossRefGoogle Scholar
  36. 37.
    Wackett LP, Gibson DT (1982) Biochem J 205:117Google Scholar
  37. 38.
    Nakamura T, Nagasawa T, Yu F, Watanabe I, Yamada H (1994) Appl Environ Microbiol 60:4630Google Scholar
  38. 39.
    Jacobs MHJ, van den Wijngaard AJ, Pentenga M, Janssen DB (1991) Eur J Biochem 202:1217CrossRefGoogle Scholar
  39. 40.
    Mischitz M, Faber K, Willets A (1995) Biotechnol Lett 17:893CrossRefGoogle Scholar
  40. 41.
    Moussou P, Archelas A, Furstoss R (1998) Tetrahedron 54:1563CrossRefGoogle Scholar
  41. 42.
    Weijers CAGM (1997) Tetrahedron: Asymmetry 8:639CrossRefGoogle Scholar
  42. 43.
    Blée E, Schuber F (1993) Plant J 4: 113CrossRefGoogle Scholar
  43. 44.
    Wojtasek H, Prestwich GD (1996) Biochem Biophys Res Comm 220:323CrossRefGoogle Scholar
  44. 45.
    Dubois GC, Apella E, Levin W, Lu AYH, Jerina DM (1978) J Biol Chem 253:2932Google Scholar
  45. 46.
    Lacourciere GM, Armstrong RN (1993) J Am Chem Soc 115:10466CrossRefGoogle Scholar
  46. 47.
    Hammock BD, Pinot F, Beetham JK, Grant DF, Arand ME, Oesch F (1994) Biochem Biophys Res Commun 198:850CrossRefGoogle Scholar
  47. 48.
    Janssen DB, Fries F, van der Ploeg J, Kazemier B, Terpstro P, Witholt B (1989) J Bacteriol 171:6791Google Scholar
  48. 49.
    Janssen DB, Pries F, van der Ploeg JR (1994) Annu Rev Microbiol 48: 163CrossRefGoogle Scholar
  49. 50.
    Verschueren KHG, Seljee F, Rozeboom HJ, Kalk KH, Dijkstra BW (1993) Nature 363:693CrossRefGoogle Scholar
  50. 51.
    Allen RH, Jakoby WB (1969) J Biol Chem 244:2078Google Scholar
  51. 52.
    Hechtberger P, Wirnsberger G, Mischitz M, Klempier N, Faber K (1993) Tetrahedron: Asymmetry 4:1161CrossRefGoogle Scholar
  52. 53.
    Bellucci G, Chiappe C, Cordoni A, Marioni F (1994) Tetrahedron Lett 35:4219CrossRefGoogle Scholar
  53. 54.
    Pedragosa-Moreau S, Archelas A, Furstoss R (1994) Bioorg Med Chem 2:609CrossRefGoogle Scholar
  54. 55.
    Kolattukudy PE, Brown L (1975) Arch Biochem Biophys 166:599CrossRefGoogle Scholar
  55. 56.
    Suzuki Y, Imai K, Marumo S (1974) J Am Chem Soc 96:3703CrossRefGoogle Scholar
  56. 57.
    Withers SG, Warren RAJ, Street IP, Rupitz K, Kempton JB, Aebersold R (1990) J Am Chem Soc 112:5887CrossRefGoogle Scholar
  57. 58.
    Pedragosa-Moreau S, Archelas A, Furstoss R (1993) J Org Chem 58:5533CrossRefGoogle Scholar
  58. 59.
    Escoffer B, Prome J-C (1989) Bioorg Chem 17:53CrossRefGoogle Scholar
  59. 60.
    Mischitz M, Mirtl C, Saf R, Faber K (1996) Tetrahedron: Asymmetry 7:2041CrossRefGoogle Scholar
  60. 61.
    Moussou P, Archelas A, Baratti J, Furstoss R (1998) J Org Chem 63:3532CrossRefGoogle Scholar
  61. 62.
    Kroutil W, Mischitz M, Faber K (1997) J Chem Soc Perkin Trans 1:3629CrossRefGoogle Scholar
  62. 63.
    Knehr M, Thomas H, Arand M, Gebel T, Zeller HD, Oesch F (1993) J Biol Chem 268:17623Google Scholar
  63. 64.
    Bell PA, Kasper CB (1993) J Biol Chem 268:14011Google Scholar
  64. 65.
    Janssen DB, Fries F, van der Ploeg J, Kazemier B, Terpstro P, Witholt B (1989) J Bacteriol 171:6791Google Scholar
  65. 66.
    Franken SM, Rozeboom HJ, Kalk KH, Dijkstra BW (1991) Embo J 10:1297Google Scholar
  66. 67.
    Jones A, Zou J Unpublished, personal communicationGoogle Scholar
  67. 68.
    Chen X-J, Archelas A, Furstoss R (1993) J Org Chem 58:5528CrossRefGoogle Scholar
  68. 69.
    Wandel U, Mischitz M, Kroutil W, Faber K (1995) J Chem Soc Perkin Trans 1:735CrossRefGoogle Scholar
  69. 72.
    DeRaadt A, Klempier N, Faber K, Griengl H (1992) In: Servi S (ed) Microbial reagents in organic synthesis. Kluwer, Dordrecht, NATO ASI Series C 381:209Google Scholar
  70. 73.
    Osprian I, Kroutil W, Mischitz M, Faber K (1997) Tetrahedron: Asymmetry 8:65CrossRefGoogle Scholar
  71. 74.
    Pedragosa-Moreau S, Morisseau C, Zylber J, Archelas A, Baratti JC, Furstoss R (1996) J Org Chem 61:7402CrossRefGoogle Scholar
  72. 75.
    Pedragosa-Moreau S, Archelas A, Furstoss R (1996) Tetrahedron 52:4593CrossRefGoogle Scholar
  73. 76.
    Pedragosa-Moreau S, Archelas A, Furstoss R (1996) Tetrahedron Lett 37:3319CrossRefGoogle Scholar
  74. 77.
    Zhang J, Reddy J, Roberge C, Senanayake C, Greasham R, Chartrain M (1995) J Ferment Bioeng 80:244CrossRefGoogle Scholar
  75. 78.
    Chartrain M, Senanayake CH, Rosazza JPN, Zhang J (1996) Int Patent No WO96/12818; Chem Abstr 125:P56385wGoogle Scholar
  76. 79.
    Nellaiah H, Morisseau C, Archelas A, Furstoss R, Baratti JC (1996) Biotechnol Bioeng 49:70CrossRefGoogle Scholar
  77. 80.
    Morisseau C, Nellaiah H, Archelas A, Furstoss R, Baratti JC (1997) Enz Microbiol Technol 20:446CrossRefGoogle Scholar
  78. 81.
    Kroutil W, Osprian I, Mischitz M, Faber K (1997) Synthesis: 156Google Scholar
  79. 82.
    Orru RVA, Mayer SF, Kroutil W, Faber K (1998) Tetrahedron 54:859CrossRefGoogle Scholar
  80. 83.
    Orru RVA, Kroutil W, Faber K (1997) Tetrahedron Lett 38:1753CrossRefGoogle Scholar
  81. 84.
    Jerina DM, Ziffer H, Daly JW (1970) J Am Chem Soc 92:1056CrossRefGoogle Scholar
  82. 85.
    Bellucci G, Capitani I, Chiappe C (1989) J Chem Soc, Chem Commun 1170Google Scholar
  83. 86.
    Carnell AJ, Iacazio G, Roberts SM, Willetts AJ (1994) Tetrahedron Lett 35:331CrossRefGoogle Scholar
  84. 87.
    Takeshita M, Akagi N, Akutsu N, Kuwashima S, Sato T, Ohkubo Y (1990) Tohoku Yakka Daigaku Kenyo Nempo 37:175Google Scholar
  85. 88.
    Archer IVJ, Leak DJ, Widdowson DA (1996) Tetrahedron Lett 37:6619CrossRefGoogle Scholar
  86. 89.
    Pedragosa-Moreau S, Morisseau C, Baratti J, Zylber J, Archelas A, Furstoss R (1997) Tetrahedron 53:9707CrossRefGoogle Scholar
  87. 90.
    Vänttinen E, Kanerva LT (1995) Tetrahedron: Asymmetry 6:1779CrossRefGoogle Scholar
  88. 91.
    Orru RVA, Osprian I, Kroutil W, Faber K (1998) Synthesis (in press)Google Scholar
  89. 92.
    Bellucci G, Berti G, Catelani G, Mastrorilli E (1981) J Org Chem 46:5148CrossRefGoogle Scholar
  90. 93.
    Bellucci G, Chiappe C, Cordoni A (1996) Tetrahedron: Asymmetry 7:197CrossRefGoogle Scholar
  91. 94.
    Blée E, Schuber F (1995) Eur J Biochem 230:229CrossRefGoogle Scholar
  92. 95.
    Kroutil W, Mischitz M, Plachota P, Faber K (1996) Tetrahedron Lett 37:8379CrossRefGoogle Scholar
  93. 96.
    Faber K (1997) Biotransformations in organic chemistry, 3rd edn. Springer, Berlin Heidelberg New York, p 270Google Scholar
  94. 97.
    Kamal A, Rao AB, Rao MV (1992) Tetrahedron Lett 33:4077CrossRefGoogle Scholar
  95. 98.
    Mischitz M, Faber K (1994) Tetrahedron Lett 35:81CrossRefGoogle Scholar
  96. 99.
    Kamal A, Damayanthi Y, Rao MV (1992) Tetrahedron: Asymmetry 3:1361CrossRefGoogle Scholar
  97. 100.
    Kroutil W, Genzel Y, Pietzsch M, Syldatk C, Faber K (1997) J Biotechnol 61:143CrossRefGoogle Scholar
  98. 101.
    Otto PPJHL, Stein F, van der Willigen CA (1988) Agric Ecosys Environ 21:121CrossRefGoogle Scholar
  99. 102.
    Mischitz M, Faber K (1996) Synlett:978Google Scholar
  100. 103.
    Archelas A, Delbecque J-P, Furstoss R (1993) Tetrahedron: Asymmetry 4:2445CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Romano V. A. Orru
    • 1
  • Alain Archelas
    • 2
  • Roland Furstoss
    • 2
  • Kurt Faber
    • 1
  1. 1.Institute of Organic ChemistryGraz University of TechnologyGrazAustria
  2. 2.Groupe Biocatalyse et Chimie Fine, ERS 157 CNRSFaculté des Sciences de LuminyMarseille Cedex 9France

Personalised recommendations