Biotransformations with Peroxidases

  • Waldemar Adam
  • Michael Lazarus
  • Chantu R. Saha-Möller
  • Oliver Weichold
  • Ute Hoch
  • Dietmar Häring
  • Peter Schreier
Part of the Advances in Biochemical Engineering/Biotechnology book series (volume 63)


Enzymes are chiral catalysts and are able to produce optically active molecules from prochiral or racemic substrates by catalytic asymmetric induction. One of the major challenges in organic synthesis is the development of environmentally acceptable chemical processes for the preparation of enantiomerically pure compounds, which are of increasing importance as pharmaceuticals and agrochemicals. Enzymes meet this challenge! For example, a variety of peroxidases effectively catalyze numerous selective oxidations of electron-rich substrates, which include the hydroxylation of arenes, the oxyfunctionalizations of phenols and aromatic amines, the epoxidation and halogenation of olefins, the oxygenation of heteroatoms and the enantioselective reduction of racemic hydroperoxides. In this review, we summarize the important advances achieved in the last few years on peroxidase-catalyzed transformations, with major emphasis on preparative applications.


Peroxidase Biocatalysis Asymmetric synthesis Kinetic resolution Hydroperoxide Epoxidation Sulfoxidation Halogenation Hydroxylation Phenol coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Faber K (1997) Biotransformations in organic chemistry, 3rd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Schreier P (1997) Enzymes and flavour biotechnology. In: Berger (ed) RG Biotechnology of aroma compounds. Springer Berlin, Heidelberg New York, p 51CrossRefGoogle Scholar
  3. 3.
    Drauz K, Waldmann H (1995) Enzmye catalysis in organic synthesis. VCH, WeinheimGoogle Scholar
  4. 4.
    Wong CH, Whitesides GM (1994) Enzymes in synthetic organic chemistry. Pergamon, New YorkGoogle Scholar
  5. 5.
    Poppe L, Novák L (1992) Selective biocatalysis. A synthetic approach. VCH, WeinheimGoogle Scholar
  6. 6.
    Roberts SM, Wiggins K, Casy G (1992) Preparative biotransformations. Whole cell and isolated enzymes in organic synthesis. Wiley, ChichesterGoogle Scholar
  7. 7.
    Flohé L (1979) CIBA Foundation Symposium 65:95Google Scholar
  8. 8.
    de Boer E, van Kooyk Y, Tromp MGM, Plat H, Wever R (1986) Biochim Biophys Acta 869:48Google Scholar
  9. 9.
    Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) FEBS Lett 169:247CrossRefGoogle Scholar
  10. 10.
    Dolin MI (1957) J Biol Chem 225:557Google Scholar
  11. 11.
    Bach A, Chodat R (1903) Chem Ber 36:600Google Scholar
  12. 12.
    Schonbaum GR, Chance B (1976) Catalase. In: Boyer PD (ed) The enzymes. Academic Press, New York, p 363Google Scholar
  13. 13.
    Bosshard HR, Anni H, Yonetani T (1991) Yeast cytochrome c peroxidase. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. CRC Press, Boca Raton, p51Google Scholar
  14. 14.
    Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in agricultural biotechnology. ACS symposium series 389. American Chemical Society, Washington, D. C., p 127Google Scholar
  15. 15.
    Thomas JA, Morris DR, Hager LP (1970) J Biol Chem 245:3135Google Scholar
  16. 16.
    Griffin BW (1991) Chloroperoxidase: A review. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. CRC Press, Boca Raton, p 85Google Scholar
  17. 17.
    Harrison JE, Schultz J (1976) J Biol Chem 251:1371Google Scholar
  18. 18.
    Dugad LB, La Mar GN, Lee HC, Ikeda-Saito M, Booth KS, Caughey WS (1990) J Biol Chem 265:7173Google Scholar
  19. 19.
    Zeng J, Fenna RE (1992) J Mol Biol 226:185CrossRefGoogle Scholar
  20. 20.
    Paul KG, Ohlsson PI (1978) Acta Chem Scand B32:395CrossRefGoogle Scholar
  21. 21.
    Pruitt KM, Tenovuo JO (1985) The lactoperoxidase system. Chemistry and biological significance. Marcel Dekker, New YorkGoogle Scholar
  22. 22.
    Schönbein CF (1856) Verh Nat Ges Basel 1:467Google Scholar
  23. 23.
    Willstätter R, Stoll A (1919) Ann Chem 416:21Google Scholar
  24. 24.
    Dunford HB (1991) Horseradish peroxidase: structure and kinetic properties. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. CRC Press, Boca Raton, p 1Google Scholar
  25. 25.
    Dawson JH (1988) Science 240:433CrossRefGoogle Scholar
  26. 26.
    Anni H, Yonetani T (1992) Mechanism of action of peroxidases. In: Sigel H, Sigel (eds) A Metal ions in biological systems: degradation of environmental pollutants by microorganisms and their metalloenzymes. Marcel Dekker, New York, p 219Google Scholar
  27. 27.
    Oritz de Montellano PR (1992) Annu Rev Pharmacol Toxicol 32:89Google Scholar
  28. 28.
    van Deurzen MPJ, van Rantwijk F, Sheldon RA (1997) Tetrahedron 53:13,183Google Scholar
  29. 29.
    Whitaker JR (1972) Principles of enzymology for the food sciences. Marcel Dekker, New York, p 591Google Scholar
  30. 30.
    Yokota K, Yamazaki I (1977) Biochem 16:1913CrossRefGoogle Scholar
  31. 31.
    Deisseroth A, Dounce AL (1970) Physiol Rev 50:319Google Scholar
  32. 32.
    Chance B, Sies H, Boveris A (1979) Physiol Rev 59:527Google Scholar
  33. 33.
    Oritz de Montellano PR, Grab LA (1987) Biochem 26:5310CrossRefGoogle Scholar
  34. 34.
    Kobayashi S, Nakano M, Kimura T, Schaap AP (1987) Biochem 26:5019CrossRefGoogle Scholar
  35. 35.
    Kobayashi S, Nakano M, Goto T, Kimura T, Schaap AP (1986) Biochem Biophys Res Commun 135:166CrossRefGoogle Scholar
  36. 36.
    Ricard J, Job D (1974) EurJ Biochem 44:359CrossRefGoogle Scholar
  37. 37.
    Smith AM, Morrison WL, Milham PJ (1982) Biochem 21:4414CrossRefGoogle Scholar
  38. 38.
    Nakajima R, Yamazaki I (1979) J Biol Chem 254:872Google Scholar
  39. 39.
    Grambow HJ (1982) Z Naturforsch Teil 37 c:884Google Scholar
  40. 40.
    Mottley C, Mason RP (1986) J Biol Chem 261:16,860Google Scholar
  41. 41.
    Campa A, Nassi L, Cilento G (1984) Photochem Photobiol 40:127Google Scholar
  42. 42.
    Halliwell B, de Rycker J (1978) Photochem Photobiol 28:757Google Scholar
  43. 43.
    Mason HS, Onopryenko I, Buhler DR (1957) Biochim Biophys Acta 24:225CrossRefGoogle Scholar
  44. 44.
    Mason HS (1957) Proc Int Symp Enzyme Chem 2:224Google Scholar
  45. 45.
    Buhler DR, Mason HS (1961) Arch Biochem Biophys 92:424CrossRefGoogle Scholar
  46. 46.
    Daly JW, Jerina DM (1970) Biophys Biochim Acta 208:340Google Scholar
  47. 47.
    Nilsson R, Pick FM, Bray RC (1969) Biochim Biophys Acta 192:145Google Scholar
  48. 48.
    Courteix A, Bergel A (1995) Enzyme Microb Technol 17:1087CrossRefGoogle Scholar
  49. 49.
    Courteix A, Bergel A (1995) Enzyme Microb Technol 17:1094CrossRefGoogle Scholar
  50. 50.
    Cilento G (1984) Pure Appl Chem 56:1179Google Scholar
  51. 51.
    Cilento G (1988) Stud Org Chem 33:435Google Scholar
  52. 52.
    Cilento G, Adam W (1995) Free Rad Biol Med 19:103CrossRefGoogle Scholar
  53. 53.
    Adam W, Baader WJ, Cilento G (1986) Biochim Biophys Acta 881:330Google Scholar
  54. 54.
    Adam W, Cilento G (1982) Chemical and biological generation of electronically excited states. Academic Press, New YorkGoogle Scholar
  55. 55.
    Adam W, Cilento G (1983) Angew Chem Int Ed Engl 22:529CrossRefGoogle Scholar
  56. 56.
    Johnson RA, Sharpless KB (1993) Catalytic asymmetric epoxidation of allylic alcohols. In: Ojima I (ed) Catalytic asymmetric synthesis. VCH, Weinheim, p 103Google Scholar
  57. 57.
    Adam W, Richter MJ (1994) Acc Chem Res 27:57CrossRefGoogle Scholar
  58. 58.
    Shum WPS, Saxton RJ, Zajacek JG (1997) US Patent 5,663,384Google Scholar
  59. 59.
    Adam W, Hoch U, Saha-Möller CR, Schreier P (1993) Angew Chem Int Ed Engl 32:1737CrossRefGoogle Scholar
  60. 60.
    Ojima I (1993) Catalytic asymmetric synthesis. VCH, WeinheimGoogle Scholar
  61. 61.
    Noyori R (1994) Asymmetric catalysis in organic synthesis. Wiley Interscience Press, New YorkGoogle Scholar
  62. 62.
    Datcheva VK, Kiss K, Solomon L, Kyler KS (1991) J Am Chem Soc 113:270CrossRefGoogle Scholar
  63. 63.
    Scheller G, Jäger E, Hoffmann B, Schmitt M, Schreier P (1995) J Agric Food Chem 43:1768CrossRefGoogle Scholar
  64. 64.
    Dussault P, Sahli A (1990) Tetrahedron Lett 31:5117CrossRefGoogle Scholar
  65. 65.
    Dussault P, Lee IQ, Kreifels SJ (1991) J Org Chem 56:4087CrossRefGoogle Scholar
  66. 66.
    Baba N, Mimura M, Hiratake J, Uchida K, Oda J (1988) Agric Biol Chem 52:2685Google Scholar
  67. 67.
    Baba N, Tateno K, Iwasa J, Oda J (1990) Agric Biol Chem 54:3349Google Scholar
  68. 68.
    Fu H, Kondo H, Ichkawa Y, Look GC, Wong CH (1992) J Org Chem 57:7265CrossRefGoogle Scholar
  69. 69.
    Hoch U, Adam W, Fell R, Saha-Möller CR, Schreier P (1997) J Mol Catal A: Chemical 117:321CrossRefGoogle Scholar
  70. 70.
    Adam W, Hoch U, Lazarus M, Saha-Möller CR, Schreier P (1995) J Am Chem Soc 117:11,898Google Scholar
  71. 71.
    Höft E, Hamann HJ, Kunath A, Adam W, Hoch U, Saha-Möller CR, Schreier P (1995) Tetrahedron: Asymmetry 6:603CrossRefGoogle Scholar
  72. 72.
    Hoch U, Scheller G, Schmitt M, Schreier P, Adam W, Saha-Möller CR (1995) Enzymes in synthetic organic chemistry: selective oxidoreductions catalyzed by the metalloenzymes lipoxygenase and peroxidase. In: Werner H, Sundermeyer J (eds) Stereoselective reactions of metal-activated molecules, 2nd Symposium. Vieweg, Braunschweig, p 33Google Scholar
  73. 73.
    Adam W, Korb MN (1997) Tetrahedron: Asymmetry 8:1131CrossRefGoogle Scholar
  74. 74.
    Adam, W, Fell RT, Hoch U, Saha-Möller CR, Schreier P (1995) Tetrahedron: Asymmetry 6:1047CrossRefGoogle Scholar
  75. 75.
    Adam W, Mock-Knoblauch C, Saha-Möller CR (1997) Tetrahedron: Asymmetry 8:1947CrossRefGoogle Scholar
  76. 76.
    Adam W, Hoch U, Humpf HU, Saha-Möller CR, Schreier P (1996) Chem Commun 2701Google Scholar
  77. 77.
    Hoch U, Humpf HU, Schreier P, Saha-Möller CR, Adam W (1997) Chirality 9:69CrossRefGoogle Scholar
  78. 78.
    Schmidt K (1997) Diploma thesis, University of WürzburgGoogle Scholar
  79. 79.
    Weichold O (1996) Diploma thesis, University of WürzburgGoogle Scholar
  80. 80.
    Häring D, Herderich M, Schüler E, Withopf B, Schreier P (1997) Tetrahedron: Asymmetry 8:853CrossRefGoogle Scholar
  81. 81.
    Schüler E, Häring D, Boss B, Herderich M, Schreier P, Adam W, Mock-Knoblauch C, Renz M, Saha-Möller CR, Weichold O (1998) The potential of selenium-containing peroxidases in asymmetric catalysis: glutathione peroxidase and seleno subtilisin. In: Werner H, Schreier P (eds) Selective reactions of metal-activated molecules. Proceedings of the 3rd international symposium SFB 347. Vieweg, Braunschweig, p 35Google Scholar
  82. 82.
    Shine WE, Stumpf PK (1974) Arch Biochem Biophys 162:147CrossRefGoogle Scholar
  83. 83.
    Kajiwara T, Matsui K, Akakabe Y (1996) Biogeneration of flavor compounds via edible seaweeds. In: Takeoka GR, Teranishi R, Williams PJ, Kobayashi A (eds) Biotechnology for improved foods and flavours. ACS symposium series 637. American Chemical Society, Washington, D.C., p 146Google Scholar
  84. 84.
    Adam W, Lazarus M, Saha-Möller CR, Schreier P (1996) Tetrahedron: Asymmetry 7:2287CrossRefGoogle Scholar
  85. 85.
    Klibanov AM, Berman Z, Alberti BN (1981) J Am Chem Soc 103:6263CrossRefGoogle Scholar
  86. 86.
    Dordick JS, Klibanov AM, Marletta MA (1986) Biochem 25:2946CrossRefGoogle Scholar
  87. 87.
    Schmall MW, Gorman LS, Dordick JS (1989) Biochim Biophys Acta 999:267Google Scholar
  88. 88.
    Akasaka R, Mashino T, Hirobe M (1995) Bioorg Med Chem Lett 5:1861CrossRefGoogle Scholar
  89. 89.
    Fujimoto S, Ishimitsu S, Hirayama S, Kawakami N, Ohara A (1991) Chem Pharm Bull 39:1598Google Scholar
  90. 90.
    Booth H, Saunders BC (1956) J Chem Soc 940Google Scholar
  91. 91.
    Hughes GMK, Saunders BC (1954) J Chem Soc 4630Google Scholar
  92. 92.
    Scott AI (1965) Quart Rev 19:1CrossRefGoogle Scholar
  93. 93.
    Pugh CEM, Raper HS (1927) Biochem J 21:1370Google Scholar
  94. 94.
    Willstätter R, Heiss H (1923) Ann Chem 433:17Google Scholar
  95. 95.
    Hathway DE (1957) Biochem J 67:445Google Scholar
  96. 96.
    Saunders BC, Holmes-Siedle AG, Stark BP (1964) Peroxidase. Butterworths, LondonGoogle Scholar
  97. 97.
    Sizer IW (1953) Adv Enzymol 14:2089Google Scholar
  98. 98.
    Gross AJ, Sizer IW (1959) J Biol Chem 234:1611Google Scholar
  99. 99.
    Harkin JM (1960) Experienta 16:80CrossRefGoogle Scholar
  100. 100.
    Freudenberg K, Harkin JM, Reichert M, Fukuzumi T (1958) Ber 91:581CrossRefGoogle Scholar
  101. 101.
    Erdtman H (1933) Biochem Z 258:177Google Scholar
  102. 102.
    Westerfeld WW, Lowe C (1942) J Biol Chem 145:463Google Scholar
  103. 103.
    Dunford HB, Stillman JS (1976) Coord Chem Rev 19:187CrossRefGoogle Scholar
  104. 104.
    Dunford HB, Adeniran AJ (1986) Arch Biochem Biophys 251:536CrossRefGoogle Scholar
  105. 105.
    Frew JE, Jones P (1984) Structure and functional properties of peroxidases and catalases. In: Sykes G (ed) Advances in inorganic and bioinorganic mechanisms. Academic Press, New York, p 175Google Scholar
  106. 106.
    Sakurada J, Sekiguchi R, Sata K, Hosoya T (1990) Biochem 29:4093CrossRefGoogle Scholar
  107. 107.
    Casella L, Poli S, Gullotti M, Selvaggini C, Beringhelli T, Marchesini A (1994) Biochem 33:6377CrossRefGoogle Scholar
  108. 108.
    Pietkäinen P, Adlercreutz P (1990) Appl Microbiol Biotechnol 33:455Google Scholar
  109. 109.
    Sawahata T, Neal RA (1982) Biochem Biophys Res Commun 109:988CrossRefGoogle Scholar
  110. 110.
    Krawczyk AR, Lipkowska E, Wróbel JT (1991) Collect Czech Chem Commun 56:1147CrossRefGoogle Scholar
  111. 111.
    Kobayashi A, Koguchi Y, Kanzaki H, Kajiyama SI, Kawazu K (1994) Biosci Biotech Biochem 58:133CrossRefGoogle Scholar
  112. 112.
    Kobayashi S, Kaneko I, Uyama H (1992) Chem Lett 393Google Scholar
  113. 113.
    Pieper DH, Winkler R, Sandermann H (1992) Angew Chem Int Ed Engl 31:68CrossRefGoogle Scholar
  114. 114.
    Donelly DMX, Murphy FG, Polonski J, Prangé T (1987) J Chem Soc Perkin Trans I 2719Google Scholar
  115. 115.
    Goodbody AE, Endo T, Vukovic J, Kutney JP, Choi LSL, Misawa M (1988) Planta Med 136Google Scholar
  116. 116.
    d’Ischia M, Napolitano A, Tsiakas K, Prota G (1990) Tetrahedron 46:5789CrossRefGoogle Scholar
  117. 117.
    Fukunishi K, Kitada K, Naito I (1991) Synthesis 237Google Scholar
  118. 118.
    Setälä H, Pajunen A, Kilpeläinen I, Brunow G (1994) J Chem Soc Perkin Trans I 1163Google Scholar
  119. 119.
    Brown BR, Bocks SM (1963) Some new enzymic reactions of phenols. In: Pridham JB (ed) Enzyme chemistry of phenolic compounds. Pergamon Press, Oxford, p 129Google Scholar
  120. 120.
    Holland HL (1992) Organic synthesis with oxidative enzymes. VCH, New York, p 341Google Scholar
  121. 121.
    Sridhar M, Vadivel SK, Bhalerao UT (1997) Tetrahedron Lett 38:5695CrossRefGoogle Scholar
  122. 122.
    Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Science 275:362CrossRefGoogle Scholar
  123. 123.
    Dordick JS, Marletta MA, Klibanov AM (1987) Biotechnol Bioeng 30:31CrossRefGoogle Scholar
  124. 124.
    Ryu K, Stafford DR, Dordick JS (1989) Peroxidase-catalyzed polymerization of phenols. In: Whitaker JR, Sonnet PE, (eds) Biocatalysis in agricultural biotechnology. American Chemical Society, Washington, D.C., p 141Google Scholar
  125. 125.
    Klibanov AM, Alberti BN, Morris ED, Felshin LM (1980) J App Biochem 2:414Google Scholar
  126. 126.
    Klibanov AM, Tu TM, Scott KP (1983) Science 221:259CrossRefGoogle Scholar
  127. 127.
    Pokora AR, Stolfo JJ (1992) US Pat 5,110,740Google Scholar
  128. 128.
    Besse P, Veschambre H (1994) Tetrahedron 50:8885CrossRefGoogle Scholar
  129. 129.
    Jacobsen EN (1993) Asymmetric catalytic epoxidation of unfunctionalized olefins. In: Ojima I (ed) Catalytic asymmetric synthesis. VCH, Weinheim, p 159Google Scholar
  130. 130.
    Colonna S, Gaggero N, Casella L, Carrea G, Pasta P (1993) Tetrahedron: Asymmetry 4:1325.CrossRefGoogle Scholar
  131. 131.
    Dexter AF, Lakner FJ, Campbell RA, Hager LP (1995) J AmChemSoc 117:6412Google Scholar
  132. 132.
    Allain EJ, Hager LP, Deng L, Jacobsen EN (1993) J Am Chem Soc 115:4415CrossRefGoogle Scholar
  133. 133.
    Zaks A, Dodds DR (1995) J Am Chem Soc 117:10,419CrossRefGoogle Scholar
  134. 134.
    Lakner FJ, Hager LP (1996) J Org Chem 61:3923CrossRefGoogle Scholar
  135. 135.
    Lakner FJ, Cain KP, Hager LP (1997) J Am Chem Soc 119:443CrossRefGoogle Scholar
  136. 136.
    Rao AB, Rao MV (1994) Tetrahedron Lett 35:279CrossRefGoogle Scholar
  137. 137.
    McCarthy MB, White RE (1983) J Biol Chem 258:9153Google Scholar
  138. 138.
    Liu KKC, Wong CH (1992) J Org Chem 57:3748CrossRefGoogle Scholar
  139. 139.
    Fang JM, Lin CH, Bradshaw CW, Wong CH (1995) J Chem Soc Perkin Trans I 967Google Scholar
  140. 140.
    Coughlin P, Roberts S, Rush C, Willetts A (1993) Biotech Lett 15:907CrossRefGoogle Scholar
  141. 141.
    Fukuzawa A, Aye M, Murai A (1990) Chem Lett 1579Google Scholar
  142. 142.
    Fukuzawa A, Takasugi Y, Murai A, Nakamura M, Tamura M (1992) Tetrahedron Lett 33:2017CrossRefGoogle Scholar
  143. 143.
    Franssen MCR, van der Plas HC (1987) Bioorg Chem 15:59CrossRefGoogle Scholar
  144. 144.
    van der Plas HC, Franssen MCR, Jansma JD, van Boven HG (1987) Eur Congr Biotechnol 2:202Google Scholar
  145. 145.
    Franssen MCR, Weijnen JGJ, Vincken JP, Laane C, van der Plas HC (1988) Biocatalysis 1:205Google Scholar
  146. 146.
    Renganathan V, Miki K, Gold MH (1987) Biochemistry 26:5127CrossRefGoogle Scholar
  147. 147.
    DeBoer E, Plat H, Wever R (1987) Algal vanadium(V)-bromoperoxidase. A halogenating enzyme retaining full activity in apolar solvent systems. In: Laane C, Tramper J, Lilly MD (eds) Biocatalysis in organic media. Elsevier, Amsterdam, p 317Google Scholar
  148. 148.
    Franssen MCR, Weijnen JGJ, Vincken JP, Laane C, van der Plas HC (1987) Haloperoxidase in reversed micelles: use in organic synthesis and optimisation of the system. In: Laane C, Tramper J, Lilly MD (eds) Biocatalysis in organic media. Elsevier, Amsterdam, p289Google Scholar
  149. 149.
    Itoh N, Izumi Y, Yamada H (1987) Biochemistry 26:282CrossRefGoogle Scholar
  150. 150.
    Itahara T, Ide N (1987) Chem Lett 2311Google Scholar
  151. 151.
    Franssen MCR, van Boven HG, van der Plas HC (1987) J Heterocyclic Chem 24:1313CrossRefGoogle Scholar
  152. 152.
    Corbett MD, Corbett BR (1985) Biochem Arch 1:115Google Scholar
  153. 153.
    Doerge DR, Corbett MD (1991) Chem Res Toxicol 4:556CrossRefGoogle Scholar
  154. 154.
    Vagujfalvi D, Petz-Stifter M (1982) Phytochem 21:1533CrossRefGoogle Scholar
  155. 155.
    Kirner S, van Pée KH (1994) Angew Chem Int Ed Engl 33:352CrossRefGoogle Scholar
  156. 156.
    Mata EG (1996) Phosphorus, Sulfur and Silicon 117:231CrossRefGoogle Scholar
  157. 157.
    Kagan HB (1993) Asymmetric oxidation of sulfides. In: Ojima I (ed) Catalytic asymmetric synthesis. VCH, Weinheim, p 203Google Scholar
  158. 158.
    Colonna S, Gaggero N, Carrea G, Pasta P (1992) J Chem Soc Chem Commun 357Google Scholar
  159. 159.
    Ozaki SI, Ortiz de Montellano PR (1995) J Am Chem Soc 117:7056CrossRefGoogle Scholar
  160. 160.
    Fu H, Kondo H, Ichikawa Y, Look GC, Wong CH (1992) J Org Chem 57:7265CrossRefGoogle Scholar
  161. 161.
    Colonna S, Gaggero N, Casella L, Carrea G, Pasta P (1992) Tetrahedron: Asymmetry 3:95CrossRefGoogle Scholar
  162. 162.
    Colonna S, Gaggero N, Carrea G, Pasta P (1994) Tetrahedron Lett 35:9103CrossRefGoogle Scholar
  163. 163.
    Ozaki SI, Ortiz de Montellano PR (1994) J Am Chem Soc 116:4487CrossRefGoogle Scholar
  164. 164.
    Colonna S, Gaggero N, Manfredi A (1990) Biochemistry 29:10,465CrossRefGoogle Scholar
  165. 165.
    Colonna S, Gaggero N, Manfredi A, Casella L, Gullotti M (1988) J Chem Soc Chem Commun 1451Google Scholar
  166. 166.
    Colonna S, Gaggero N, Carrea G, Pasta P (1997) J Chem Soc Chem Commun 439Google Scholar
  167. 167.
    Schmidt MM, Schüler E, Braun M, Häring D, Schreiner P (1998) Tetrahedron Lett 39:2945CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Waldemar Adam
    • 1
  • Michael Lazarus
    • 2
  • Chantu R. Saha-Möller
    • 1
  • Oliver Weichold
    • 1
  • Ute Hoch
    • 2
  • Dietmar Häring
    • 2
  • Peter Schreier
    • 2
  1. 1.Institute of Organic ChemistryUniversity of WürzburgWürzburgGermany
  2. 2.Institute of Pharmacy and Food ChemistryUniversity of WürzburgWürzburgGermany

Personalised recommendations