Advertisement

A Tableau Method for Interval Temporal Logic with Projection

  • Howard Bowman
  • Simon Thompson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1397)

Abstract

This paper introduces a tableau method for propositional interval temporal logic (ITL) [14]. Beyond the usual operators of linear temporal logic, ITL contains sequencing and iterative operators, ‘;’ and proj akin to programming combinators. Central to our approach is a normal form for the formulas of ITL, particularly ‘;’ and proj, in terms of the ‘◯’ operator of the logic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: A framework for programming in temporal logic. In Lecture Notes in Artificial Intelligence, vol. 430. Springer-Verlag, 1989.Google Scholar
  2. 2.
    M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. In 8th ACM Symposium on Principles of Programming Languages, pages 164–176. ACM, 1981.Google Scholar
  3. 3.
    Howard Bowman, Helen Cameron, Peter King, and Simon Thompson. Specification and prototyping of structured multimedia documents using interval temporal logic. In ICTL’97, International Conference on Temporal Logic, Manchester. Kluwer, Applied Logic Series, 1997.Google Scholar
  4. 4.
    Howard Bowman, Helen Cameron, Peter King, and Simon Thompson. Specification and prototyping of structured multimedia documents using interval temporal logic. Technical Report 3-97 (Kent), Computing Laboratory, University of Kent, 1997.Google Scholar
  5. 5.
    Howard Bowman and Simon Thompson. A tableau method for interval temporal logic. Technical Report 12-97, Computing Laboratory, University of Kent, 1997.Google Scholar
  6. 6.
    A. Cau and H. Zedan. Refining interval temporal logic specifications. In Fourth AMAST Workshop on Real-Time Systems, Concurrent, and Distributed Softward (ARTS’97), LNCS 1231, May 1997.Google Scholar
  7. 7.
    Z. H. Duan. An Extended Interval Temporal Logic and A Framing Technique for Temporal Logic Programming. PhD thesis, University of Newcastle Upon Tyne, May 1996.Google Scholar
  8. 8.
    Dov Gabbay. The declarative past and imperative future. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Temporal Logic in Specification. Lecture Notes In Computer Science 389, Springer-Verlag, 1989.Google Scholar
  9. 9.
    R. Hale. Using temporal logic for prototyping: the design of a lift controller. In Lecture Notes in Computer Science, vol. 379, pages 375–408. Springer-Verlag, 1989.Google Scholar
  10. 10.
    S. Kono. A combination of clausal and non-clausal temporal logic programs. In Lecture Notes in Artificial Intelligence, vol. 897, pages 40–57. Springer-Verlag, 1993.Google Scholar
  11. 11.
    O. Lichtensteim, A. Pnueli, and L. Zuck. The glory of the past. In Proceedings of Conference on Logics of Programs, LNCS 193. Springer-Verlag, 1985.Google Scholar
  12. 12.
    Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag, 1992.Google Scholar
  13. 13.
    T. Melham. Higher Order Logic and Hardware Verification. Cambridge Tracts in Theoretical Computer Science (31), 1993.Google Scholar
  14. 14.
    B. Moszkowski. Executing Temporal Logic. Cambridge University Press, 1986.Google Scholar
  15. 15.
    N. Rescher and A. Urquart. Temporal Logic. Springer-Verlag, 1971.Google Scholar
  16. 16.
    R. Rosner and A. Pnueli. A choppy logic. In Proceedings of 1st IEEE Symposium on Logic in Computer Science, pages 306–314. IEEE, 1986.Google Scholar
  17. 17.
    Simon Thompson. Constructive interval temporal logic in alf. In ICTL’97, International Conference on Temporal Logic, Manchester. Kluwer, Applied Logic Series, 1997.Google Scholar
  18. 18.
    P. Wolper. Temporal logic can be more expressive. Information and Computation, 56:72–99, 1983.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Howard Bowman
    • 1
  • Simon Thompson
    • 1
  1. 1.Computing LaboratoryUniversity of Kent at CanterburyCanterbury, KentUK

Personalised recommendations