Advertisement

A Tableau Calculus for Quantifier-Free Set Theoretic Formulae

  • Bernhard Beckert
  • Ulrike Hartmer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1397)

Abstract

Set theory is the common language of mathematics. Therefore, set theory plays an important rôle in many important applications of automated deduction. In this paper, we present an improved tableau calculus for the decidable fragment of set theory called multi-level syllogistic with singleton (MLSS). Furthermore, we describe an extension of our calculus for the bigger fragment consisting of MLSS enriched with free (uninterpreted) function symbols (MLSSF).

Keywords

Function Symbol Predicate Symbol Sequent Calculus Automate Deduction Closure Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Beckert. Rigid E-unification. In W. Bibel and P. H. Schmitt, editors, Automated Deduction — A Basis for Applications, volume I. Kluwer, 1998. To appear.Google Scholar
  2. 2.
    F. M. Brown. Towards the automation of set theory. J. of AI, 10:218–316, 1978.Google Scholar
  3. 3.
    D. Cantone. Decision procedures for elementary sublanguages of set theory. X. Journal of Automated Reasoning, 7:193–230, 1991.zbMATHMathSciNetGoogle Scholar
  4. 4.
    D. Cantone. A fast saturation strategy for set-theoretic tableaux. In Proceedings, TABLEAUX, Pont-a-Mousson, France, LNCS 1227, pages 122–137. Springer, 1997.Google Scholar
  5. 5.
    D. Cantone and A. Ferro. Techniques of computable set theory with applications to proof verification. Comm. on Pure and Applied Mathematics, 48:901–946, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    D. Cantone, A. Ferro, and E. Omodeo. Computable Set Theory. Oxford University Press, 1989.Google Scholar
  7. 7.
    D. Cantone, A. Ferro, and T. J. Schwartz. Decision procedures for elementary sublanguages of set theory. VI. Comm. on Pure and Applied Mathematics, 38:549–571, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Cantone, A. Ferro, and T. J. Schwartz. Decision procedures for elementary sublanguages of set theory. V. J. of Computer and Syst. Sciences, 34:1–18, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Cantone and T. J. Schwartz. Decision procedures for elementary sublanguages of set theory. XI. Journal of Automated Reasoning, 7:231–256, 1991.zbMATHMathSciNetGoogle Scholar
  10. 10.
    H. de Nivelle. Implementation of sequent calculus and set theory. Draft, Feb. 1997.Google Scholar
  11. 11.
    A. Ferro and E. Omodeo. Decision procedures for elementary sublanguages of set theory. VII. Communications on Pure and Applied Mathematics, 40:265–280, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    U. Hartmer. Erweiterung des Tableaukalküls mit freien Variablen um die Behandlung von Mengentheorie. Diplomarbeit, Universität Karlsruhe, 1997.Google Scholar
  13. 13.
    T. Jech. Set Theory. Academic Press, New York, 1978.Google Scholar
  14. 14.
    D. Pastre. Automatic theorem proving in set theory. J. of AI, 10:1–27, 1978.zbMATHMathSciNetGoogle Scholar
  15. 15.
    B. Shults. Comprehension and description in tableaux. Draft, May 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Bernhard Beckert
    • 1
  • Ulrike Hartmer
    • 2
  1. 1.Institute for Logic, Complexity and Deduction SystemsUniversity of KarlsruheKarlsruheGermany
  2. 2.Technologiezentrum DarmstadtDeutsche Telekom AGDarmstadtGermany

Personalised recommendations