Organometallic Bonding and Reactivity pp 109-163

Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 4)

| Cite as

A Critical Assessment of Density Functional Theory with Regard to Applications in Organometallic Chemistry

  • A. Görling
  • S. B. Trickey
  • P. Gisdakis
  • N. Rösch
Chapter

Abstract

Reliable quantitative predictions from quantum chemical calculations are a rather recent part of the organo-metallic chemistry scene. The delay, compared to the rate of development in the case of small-to medium-sized organic molecules, was caused largely by the wide variety of valence electronic structures which come into play for transition metal organometallics. Such diversity of hybridization candidates is a challenge to commonly used Density Functional approximations, so it has been somewhat surprising that much of the recent theoretical and computational progress has come from DF calculations. For insight into both the power and limitations of current DF methodology, therefore, we give a descriptive, detailed, but minimally mathematical survey of the ingredients of Hohenberg-Kohn-Sham theory as currently practiced. This overview is followed by a description of the techniques used to build realistic chemistry and physics into the required approximations. After that the origins, properties, and inter-relationships of the more widely used approximations are discussed. In the final section, we give a brief account of the accuracy of current exchange-correlation approximations and of the way in which semi-empirical DF variants are calibrated. A suggestive survey highlights applications to transition metal organometallics, and, as a detailed example, a case study of oxygen transfer reactions by transition metal oxo and peroxo complexes is presented.

Keywords

Density functional theory Kohn-Sham formalism Exchange-correlation approximation Local density approximation Generalized gradient approximation Hybrid methods Olefin epoxidation Olefin dihydroxylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoffmann R (1982) Angew Chem Int Ed Engl 21:711CrossRefGoogle Scholar
  2. 2.
    Albright TA, Burdett JK, Whangbo MH (1985) Orbital interaction in chemistry. Wiley, New YorkGoogle Scholar
  3. 3.
    Hofmann P (1986) Applied MO theory: Organometallic structure and reactivity problems. In: Veillard A (ed) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO Advanced Science Institute Series C176. Reidel, Dordrecht, p 253Google Scholar
  4. 4.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:271Google Scholar
  5. 5.
    Frenking G, Antes I, Böhme M, Dapprich S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov SF (1996) Pseudopotential calculations of transition metal compounds: Scope and limitations. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, Vol 8. VCH, New York, p 63CrossRefGoogle Scholar
  6. 6.
    Almlöf J, Faegri Jr K, Korsell K (1982) J Comput Chem 3:385CrossRefGoogle Scholar
  7. 7.
    Häser M, Ahlrichs R J Comput Chem (1989) 10:104CrossRefGoogle Scholar
  8. 8.
    Siegbahn PEM (1983) The direct CI method. In: Diercksen GHF, Wilson S (eds) Methods in computational molecular physics. NATO Advanced Science Institute Series C113. Reidel, Dordrecht, p 189Google Scholar
  9. 9.
    Siegbahn PEM (1992) The configuration interaction method. In: Roos BO (ed) Lecture notes in quantum chemistry. Springer, Berlin Heidelberg New York, p 255Google Scholar
  10. 10. (a)
    Gregory K, Schleyer PvR, Snaith R (1991) AdvInorg Chem 37:47Google Scholar
  11. 10. (b)
    Kaufmann E, Raghavachari K, Reed AE, Schleyer PvR. (1988) Organometallics 7:1597CrossRefGoogle Scholar
  12. 11.
    Ziegler T (1991) Chem Rev 91:651CrossRefGoogle Scholar
  13. 12.
    Veillard A (ed) (1986) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO Advanced Science Institute Series C176. Reidel, DordrechtGoogle Scholar
  14. 13.
    Rösch N, Jörg H, Dunlap BI (1986) Application of the LCGTO-Xα method to transition metal carbonyls. In: Veillard A (ed) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO Advanced Science Institute Series C176. Reidel, Dordrecht, p 179Google Scholar
  15. 14.
    Baerends EJ, Rozendaal A (1986) Analysis of σ-bonding, π-(back) bonding and the synergetic effect in Cr(CO)6. Comparison of Hartree-Fock and Xα results for metal-CO bonding. In: Ref. Veillard A (ed) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO Advanced Science Institute Series C176. Reidel, Dordrecht, p 159Google Scholar
  16. 15.
    Rösch N, Jörg H (1986) J Chem Phys 84:5967CrossRefGoogle Scholar
  17. 16.
    Salahub DR, Zerner MC (eds) (1989) The challenge of d and f electrons. Theory and computation. ACS Symposium Series 394. American Chemical Society, Washington, DCGoogle Scholar
  18. 17.
    Labanowski JK, Andzelm JW (eds) (1991) Density functional methods in chemistry. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. 18.
    Verluis L, Ziegler T (1988) J Chem Phys 88:322CrossRefGoogle Scholar
  20. 19.
    Fournier R, Andzelm J, Salahub DR (1989) J Chem Phys 90:6371CrossRefGoogle Scholar
  21. 20.
    Dunlap BI, Andzelm J, Mintmire JW (1990) Phys Rev A 42:6354CrossRefGoogle Scholar
  22. 21.
    Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612CrossRefGoogle Scholar
  23. 22.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  24. 23.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  25. 24.
    Slater JC (1968) Quantum theory of matter, 2nd ed. McGraw-Hill, New YorkGoogle Scholar
  26. 25.
    Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw Hill, New YorkGoogle Scholar
  27. 26.
    Parr RG, Yang W (1989) Density-functional theory. Oxford University Press, OxfordGoogle Scholar
  28. 27.
    Jones RO, Gunnarson O (1989) Rev Mod Phys 61:689CrossRefGoogle Scholar
  29. 28.
    Dreizler RM, Gross EKU (1990) Density functional theory. Springer, Berlin Heidelberg New YorkGoogle Scholar
  30. 29.
    Trickey SB (ed) (1990) Density functional theory of many-fermion systems. Adv Quantum Chem 21. Academic Press, San DiegoGoogle Scholar
  31. 30.
    Gross EKU, Dreizler RM (eds) (1995) Density functional theory. NATO Advanced Science Institute Series B337. Plenum Press, New YorkGoogle Scholar
  32. 31.
    Seminario JM, Politzer P (eds) (1995) Modern density functional theory. Elsevier Science, AmsterdamGoogle Scholar
  33. 32.
    Seminario JM (ed) (1996) Recent development and aplications of modern density functional theory. Elsevier Science, AmsterdamGoogle Scholar
  34. 33.
    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974CrossRefGoogle Scholar
  35. 34.
    Bartolotti LJ, Flurchick K (1996) Introduction to density functional theory. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 7. VCH, NewYork, p 187CrossRefGoogle Scholar
  36. 35.
    Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221CrossRefGoogle Scholar
  37. 36.
    Löwdin PO (1955) Phys Rev 97:1474CrossRefGoogle Scholar
  38. 37.
    Bartlett RJ (1981) Ann Rev Phys Chem 32:359CrossRefGoogle Scholar
  39. 38.
    Bartlett RJ, Stanton JF (1994) Applications of post-Hartree-Fock methods: A tutorial. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 5. VCH Publishers, New York, p 65CrossRefGoogle Scholar
  40. 39.
    Werner HJ (1987) Matrix-formulated direct multiconfiguration self-consistent field and multiconfiguration reference configuration-interaction methods. In: Lawley KP (ed) Ab initio methods in quantum chemistry, part II, Adv Chem Phys 69:1Google Scholar
  41. 40.
    Roos BO (1987) The complete active space self-consistent field method and its applications in electronic calculations. In: Lawley KP (ed) Ab initio methods in quantum chemistry, part II, Adv Chem Phys 69:399Google Scholar
  42. 41.
    Siegbahn PEM (1996) Electronic structure calculations for molecules containing transition metals. In: Prigogine I, Rice SA (eds) New methods in computational quantum mechanics. Adv Chem Phys 93:333Google Scholar
  43. 42.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  44. 43.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  45. 44.
    Lieb EH (1981) Rev Mod Phys 53:603CrossRefGoogle Scholar
  46. 45.
    van Wüllen C, private communicationGoogle Scholar
  47. 46.
    Levy M (1979) Proc Nat Acad Sci 76:6002Google Scholar
  48. 47.
    Levy M (1990) Constrained-search formulation and recent coordinate scaling in density-functional theory. In: Trickey SB (ed) Density functional theory of many-fermion systems. Adv Quantum Chem 21. Academic Press, San Diego, p 69CrossRefGoogle Scholar
  49. 48.
    Dirac PAM (1930) Proc Cambridge Phil Soc 26:376CrossRefGoogle Scholar
  50. 49.
    Jones RS, Trickey SB (1987) Phys Rev B 36:3095Google Scholar
  51. 50.
    Burke K, Perdew JP, Levy M (1995) Semilocal density functionals for exchange and correlation: Theory and applications. In: Seminario JM, Politzer P (eds) Modern density functional theory. Elsevier Science, Amsterdam, p 29CrossRefGoogle Scholar
  52. 51.
    Talman JD, Shadwick WF, (1976) Phys. Rev. A 14:36Google Scholar
  53. 52.
    Kotani T (1995) Phys Rev Lett 74:2989CrossRefGoogle Scholar
  54. 53.
    Städele M, Majewski JA, Vogl P, Görling A (1997) Phys Rev Lett 79:2089CrossRefGoogle Scholar
  55. 54.
    Krieger JB, Li Y, Iafrate GJ (1992) Phys Rev A 45:101CrossRefGoogle Scholar
  56. 55.
    Grabo T, Gross EKU (1997) Int J Quantum Chem 64:95CrossRefGoogle Scholar
  57. 56.
    Slater JC, Wood JH (1971) Int J Quantum Chem Symp 4:3Google Scholar
  58. 57.
    Janak JF (1978) Phys. Rev. B 18:7165Google Scholar
  59. 58.
    Schlüter M, Sham LJ (1990) Density functional theory of the band gap. In: Trickey SB (ed) Density functional theory of many-fermion systems. Adv Quantum Chem 21. Academic Press, San Diego, p 97CrossRefGoogle Scholar
  60. 59.
    Perdew JP (1990) Size-consistency, self-interaction correction, and derivative discontinuity in density functional theory. In: Trickey SB (ed) Density functional theory of many-fermion systems. Adv Quantum Chem 21. Academic Press, San Diego, p 113CrossRefGoogle Scholar
  61. 60.
    Görling A (1996) Phys Rev A 54:3912Google Scholar
  62. 61.
    Harris J, Jones RO (1974) J Phys F: Solid State Phys 4:1170Google Scholar
  63. 62.
    Langreth DC, Perdew JP (1975) Solid State Commun 17:1425CrossRefGoogle Scholar
  64. 63.
    Gunnarson O, Lundqvist (1976) Phys Rev B 13:4274Google Scholar
  65. 64. (a)
    Savin A, Umrigar CJ, Gonze X (1998) Chem Phys Lett 288:391CrossRefGoogle Scholar
  66. 64. (b)
    Umrigar CJ, Savin A, Gonze X (1998) Are unoccupied Kohn-Sham eigenvalues related to excitation energies? In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum, New York, p 167Google Scholar
  67. 65.
    Filippi C, Umrigar CJ, Gonze X (1997) J Chem Phys 107:9994CrossRefGoogle Scholar
  68. 66.
    See, for example, Salem L (1966) Molecular orbital theory of conjugated systems, Benjamin, New York, p 110Google Scholar
  69. 67.
    Hoffmann R (1963) J Chem Phys 39:1397CrossRefGoogle Scholar
  70. 68.
    Mulliken RS (1952) J Am Chem Soc 64:811CrossRefGoogle Scholar
  71. 69.
    Pearson RG (1963) J Am Chem Soc 85:3533CrossRefGoogle Scholar
  72. 70.
    Pearson RG (1997) Chemical hardness. Applications from molecules to solids. Wiley-VCH, WeinheimGoogle Scholar
  73. 71.
    Parr RG, Yang W (1989) Density-functional theory. Oxford University Press, Oxford, chaps 4 and 5Google Scholar
  74. 72.
    Geerlings P, De Proft F, Martin JML (1996) Density-functional theory concepts and techniques for studying molecular charge distributions and related properties. In: Seminario JM (ed) Recent development and aplications of modern density functional theory. Elsevier Science, Amsterdam, p 773CrossRefGoogle Scholar
  75. 73.
    Nalewajski RF (1990) Charge sensitivity analysis as diagnostic tool for predicting trends in chemical reactivity. In: Ref Politzer P (eds) (1995) Modern density functional theory. Elsevier Science, Amsterdam [31] p 339Google Scholar
  76. 74.
    Slater JC (1974) The self-consistent field for molecules and solids: Quantum theory of molecules and solids, Vol IV. McGraw-Hill, New YorkGoogle Scholar
  77. 75.
    Savin A (1995) Beyond the Kohn-Sham determinant. In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, p 129Google Scholar
  78. 76.
    Ziegler T, Rauk A, Baerends EJ (1977) Theor Chim Acta (Berl) 43:261CrossRefGoogle Scholar
  79. 77.
    Barth U von (1979) Phys Rev A 20:1693Google Scholar
  80. 78.
    Filatov M, Shaik S (1998) Chem Phys Lett 288:689CrossRefGoogle Scholar
  81. 79.
    Stückl AC, Daul CA, Güdel HU (1997) Int J Quantum Chem 61:579and references cited thereinCrossRefGoogle Scholar
  82. 80.
    Weiner B, Trickey SB (1998) Int J Quantum Chem 69:451CrossRefGoogle Scholar
  83. 81.
    Görling A (1993) Phys Rev A 47:2783Google Scholar
  84. 82.
    Dunlap BI (1991) Symmetry and local potential methods. In: Labanowski JK, Andzelm JW (eds) Density functional methods in chemistry. Springer, Berlin Heidelberg New York, p 49Google Scholar
  85. 83.
    Löwdin PO (1963) Rev Mod Phys 35:496CrossRefGoogle Scholar
  86. 84.
    Bauernschmitt R, Ahlrichs R (1996) J Chem Phys 104:9047CrossRefGoogle Scholar
  87. 85.
    Becke AD (1988) Phys Rev A 38:3098Google Scholar
  88. 86.
    van Leeuwen R, Baerends EJ (1994) Phys Rev A 49:2421Google Scholar
  89. 87.
    Ernzerhof M, Burke K, Perdew JP (1996) Density functional theory, the exchange hole, and the molecular bond. In: Seminario JM (ed) Recent development and aplications of modern density functional theory. Elsevier Science, Amsterdam, p 207CrossRefGoogle Scholar
  90. 88.
    Umrigar CJ, Gonze X (1994) Phys Rev A 50:3827Google Scholar
  91. 89.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200Google Scholar
  92. 90.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244Google Scholar
  93. 91.
    Perdew JP, Zunger A (1981) Phys Rev B 23:5048Google Scholar
  94. 92.
    Kristyan S, Pulay P (1994) Chem Phys Lett 229:175CrossRefGoogle Scholar
  95. 93.
    Pérez-Jordá JM, Becke AD (1995) Chem Phys Lett 233:134CrossRefGoogle Scholar
  96. 94.
    Hedin L, Lundqvist BI (1971) J Phys C: Solid State Phys 4:2064CrossRefGoogle Scholar
  97. 95.
    Moruzzi VL, Janak JF, Williams AR (1978) Calculated electronic properties of metals. Pergamon, New York, p 26Google Scholar
  98. 96.
    Perdew JP (1991) Unified theory of exchange and correlation beyond the local density approximation. In: Ziesche P, Eschrig H (eds) Electronic structure of solids. Akademie Verlag, BerlinGoogle Scholar
  99. 97.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Filohais C (1992) Phys Rev B 46:6671Google Scholar
  100. 98.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865; (1997) Phys Rev Lett 78:1396 (E)CrossRefGoogle Scholar
  101. 99.
    Perdew JP, Wang Y (1986) Phys Rev B 33:8800; (1989) Phys Rev B 40:3399Google Scholar
  102. 100.
    Perdew JP (1986) Phys Rev B 33:8822Google Scholar
  103. 101.
    Zhang Y, Yang W (1998) Phys Rev Lett 80:890CrossRefGoogle Scholar
  104. 102.
    Perdew JP, Burke K, Ernzerhof M (1998) Phys Rev Lett 80:891CrossRefGoogle Scholar
  105. 103.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785Google Scholar
  106. 104.
    Colle R, Salvetti O (1975) Theor Chim Acta 37:329CrossRefGoogle Scholar
  107. 105.
    Morrison RC (1993) Int J Quantum Chem 46:583CrossRefGoogle Scholar
  108. 106.
    Proynov EI, Salahub DR (1994) Phys Rev B 49:7874Google Scholar
  109. 107.
    Proynov EI, Vela A, Salahub DR (1995) Chem Phys Lett 230:419; Erratum (1995) ibid. 234:462CrossRefGoogle Scholar
  110. 108.
    Proynov EI, Ruiz E, Vela A, Salahub DR (1995) Internat J Quantum Chem S29:61CrossRefGoogle Scholar
  111. 109.
    Proynov EI, Sirois S, Salahub DR (1996) Internat J Quantum Chem 64:427CrossRefGoogle Scholar
  112. 110.
    Filippi C, Gonze X, Umrigar CJ (1996) Generalized gradient approximations to density functional theory: comparison with exact results. In: Seminario JM (ed) Recent development and aplications of modern density functional theory. Elsevier Science, Amsterdam, p 295CrossRefGoogle Scholar
  113. 111.
    Towler MD, Zupan A, Causa M (1996) Comp Phys Comm 98:181. Appendix ACrossRefGoogle Scholar
  114. 112.
    Barone V (1995) Structure, magnetic properties, and reactivities of open-shell species from density functional and self-consistent hybrid methods. In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, p 287Google Scholar
  115. 113.
    Seminario JM, (1990) An introduction to density functional theory in chemistry. In: Ref Politzer P (eds) (1995) Modern density functional theory. Elsevier Science, Amsterdam [31] p1Google Scholar
  116. 114.
    Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1995) Gaussian 94, Gaussian Inc, Pittsburgh PAGoogle Scholar
  117. 115.
    Görling A, Ernzerhof M (1995) Phys Rev A 51:4501Google Scholar
  118. 116.
    Görling A, Levy M (1997) J Chem Phys 106:2675CrossRefGoogle Scholar
  119. 117.
    Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968CrossRefGoogle Scholar
  120. 118. (a)
    Curtiss LA, Raghavachari K, Pople JA (1995) J Chem Phys 103:4192CrossRefGoogle Scholar
  121. 118. (b)
    Raghavachari K, Curtiss LA (1995) Evaluation of bond energies to chemical accuracy by quantum chemical. In: Yarkony DR (ed) Modern electronic structure theory. World Scientific, Singapore, p 991Google Scholar
  122. 119. (a)
    Siegbahn Blomberg MRA, Svensson M (1994) Chem Phys Lett 223:35CrossRefGoogle Scholar
  123. 119. (b)
    Siegbahn Svensson M, Boussard PJE (1995) J Chem Phys 102:5377CrossRefGoogle Scholar
  124. 120.
    Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566CrossRefGoogle Scholar
  125. 121.
    Becke AD (1992) J Chem Phys 96:2155CrossRefGoogle Scholar
  126. 122. (a)
    Peterson GA, Al-Laham MA (1991) J Chem Phys 94:6081CrossRefGoogle Scholar
  127. 122. (b)
    Peterson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193CrossRefGoogle Scholar
  128. 123.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063CrossRefGoogle Scholar
  129. 124.
    Baker J, Muir M, Andzelm J (1995) J Chem Phys 102:2063CrossRefGoogle Scholar
  130. 125.
    Baker J, Muir M, Andzelm J, Scheiner A (1996) Hybrid Hartree-Fock density-functional theory functionals: the adiabatic connection method. In: Laird BB, Ross RB, Ziegler T (eds) Chemical applications of density-functional theory. ACS Symposium Series 629, American Chemical Society, Washington DC, p 342Google Scholar
  131. 126.
    Stanton RV, Merz Jr KM (1994) J Chem Phys 100:434CrossRefGoogle Scholar
  132. 127.
    Jursic BS (1996) Computing transition state structure with density functional theory methods. In: Seminario JM (ed) Recent development and aplications of modern density functional theory. Elsevier Science, Amsterdam, p 709CrossRefGoogle Scholar
  133. 128.
    Johnson BG, Gonzales CA, Gill PMW, Pople JA (1994) Chem Phys Lett 221:100CrossRefGoogle Scholar
  134. 129.
    Gunnarsson O, Jones RO (1995) Phys Rev B 31:7588Google Scholar
  135. 130.
    Ziegler T, Li J (1994) Can J Chem 72:783CrossRefGoogle Scholar
  136. 131.
    Blomberg MRA, Siegbahn Svensson M (1996) J Chem Phys 104:9546CrossRefGoogle Scholar
  137. 132.
    Rösch N, Trickey SB (1997) J Chem Phys 106:8940CrossRefGoogle Scholar
  138. 133. (a)
    Ehlers A, Frenking G (1993) J Chem Soc Chem Commun: 1709Google Scholar
  139. 133. (b)
    Ehlers A, Frenking G (1994) J Am Chem Soc 116:1514CrossRefGoogle Scholar
  140. 134. (a)
    Blomberg MRA, Brandemark UB, Siegbahn Wennerberg J, Bauschlicher Jr CW (1988) J Am Chem Soc 110:6650CrossRefGoogle Scholar
  141. 134. (b)
    Bauschlicher Jr CW, Langhof SR (1989) Chem Phys 129:431CrossRefGoogle Scholar
  142. 135.
    Barnes LA, Rosi M, Bauschlicher Jr CW (1991) J Chem Phys 94:2031CrossRefGoogle Scholar
  143. 136.
    Blomberg MRA, Siegbahn Lee TJ, Rendell AP, Rice JE (1991) J Chem Phys 95:5898CrossRefGoogle Scholar
  144. 137. (a)
    Stevens AE, Feigerle CS, Lineberger WC (1982) J Am Chem Soc 104:5026CrossRefGoogle Scholar
  145. 137. (b)
    Lewis KE, Golden DM, Smith GP (1984) J Am Chem Soc 106:3905CrossRefGoogle Scholar
  146. 138.
    Li J, Schreckenbach G, Ziegler T (1995) J Am Chem Soc 117:486CrossRefGoogle Scholar
  147. 139.
    Jonas V, Thiel W (1995) J Chem Phys 102:8474CrossRefGoogle Scholar
  148. 140.
    Fournier R, Pápai I (1995) Infrared spectra and binding energies of transition metalmonoligand complexes. In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, p 219Google Scholar
  149. 141.
    Nasluzov VA, Rösch N (1996) Chem Phys 210:413CrossRefGoogle Scholar
  150. 142.
    Bauschlicher Jr CW, Partridge H, Sheehy JA, Langhoff SR, Rosi M (1992) J Phys Chem 96:6969CrossRefGoogle Scholar
  151. 143.
    Holthausen MC, Heinemann Cornehl HH, Koch W, Schwarz H (1995) J Chem Phys 102:4931CrossRefGoogle Scholar
  152. 144.
    Holthausen MC, Mohr M, Koch W (1995) Chem Phys Lett 240:245CrossRefGoogle Scholar
  153. 145.
    Ricca A, Bauschlicher CW Jr (1995) Chem Phys Lett 245:150CrossRefGoogle Scholar
  154. 146.
    Rohlfing CM, Hay PJ (1985) J Chem Phys 83:4641CrossRefGoogle Scholar
  155. 147.
    Lüthi HP, Siegbahn Almlöf J (1985) J Phys Chem 89:2156CrossRefGoogle Scholar
  156. 148.
    Barnes LA, Liu B, Lindh R (1993) J Chem Phys 98:3978CrossRefGoogle Scholar
  157. 149.
    Jonas V, Thiel W (1996) J Chem Phys 105:3636CrossRefGoogle Scholar
  158. 150.
    Bray MR, Deeth RJ, Paget VJ, Sheen PD (1996) Int J Quantum Chem 61:85CrossRefGoogle Scholar
  159. 151.
    Bérces A, Ziegler T (1994) J Phys Chem 98:13233CrossRefGoogle Scholar
  160. 152.
    Bérces A (1996) J Phys Chem 100:16538CrossRefGoogle Scholar
  161. 153.
    Wachters AJH (1970) J Chem Phys 52:1033CrossRefGoogle Scholar
  162. 154.
    Dunning Jr TH (1971) J Chem Phys 55:716CrossRefGoogle Scholar
  163. 155. (a)
    Dolg M, Wedig U, Stoll H, Preuß H (1987) J Chem Phys 86:866CrossRefGoogle Scholar
  164. 155. (b)
    Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123CrossRefGoogle Scholar
  165. 156. (a)
    Delley B, Wrinn M, Lüthi HP (1994) J Chem Phys 100:5785CrossRefGoogle Scholar
  166. 156. (b)
    Delley B (1994) DMol a Standard tool for density functional calculations: review and advances. In: Seminario JM, Politzer P (eds) Density functional theory. Elsevier Science, Amsterdam p 221Google Scholar
  167. 157. (a)
    Braterman PS (1975) Metal carbonyl spectra. Academic, LondonGoogle Scholar
  168. 157. (b)
    Jones LH, McDowell RS, Goldblatt M (1969) Inorg Chem 8:2349CrossRefGoogle Scholar
  169. 158.
    Merle-Mejean T, Cosse-Mertens C, Bouchareb S, Galan F, Mascetti J, Tranquille M (1992) J Phys Chem 96:9148CrossRefGoogle Scholar
  170. 159.
    Rösch N, Krüger S, Mayer M, Nasluzov VA (1996) The Douglas-Kroll-Hess approach to relativistic density functional theory: methodological aspects and applications to metal complexes and clusters. In: Seminario JM (ed) Recent development and aplications of modern density functional theory. Elsevier Science, Amsterdam, p 497CrossRefGoogle Scholar
  171. 160.
    Dunning Jr TH, Hay PJ (1976) Gaussian basis sets for molecular calculations. In: Schaefer III HF (ed) Modern theoretical chemistry, Vol 3, New York, p 1Google Scholar
  172. 160. (b)
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  173. 161. (a)
    Kolb HC, VanNieuwenzhe MS, Sharpless KB (1994) Chem Rev 94:2483CrossRefGoogle Scholar
  174. 161. (b)
    Johnson RA, Sharpless KB (1993) Catalytic asymmetric dihydroxylation. In:. Ojima I (ed) Catalytic asymmetric synthesis. VCH, New YorkGoogle Scholar
  175. 162. (a)
    Jacobsen EN (1993) Asymmetric catalytic epoxidation of unfunctionalized olefins. In: Ojima I (ed) Catalytic asymmetric synthesis. VCH, New YorkGoogle Scholar
  176. 162. (b)
    Sheldon RA (1992) Catalytic oxydations with hydrogen peroxides as oxidant. Kluwer, RotterdamGoogle Scholar
  177. 163.
    Jorgensen KA (1989) Chem Rev 89:431CrossRefGoogle Scholar
  178. 164. (a)
    Herrmann WA (1995) J Organomet Chem 500:149CrossRefGoogle Scholar
  179. 164. (b)
    Herrmann WA, Kühn FE (1997) Acc Chem Res 30:169CrossRefGoogle Scholar
  180. 164. (c)
    Romão CC, Kühn FE, Herrmann WA (1997) Chem Rev 97:3197CrossRefGoogle Scholar
  181. 165.
    Pidun U, Boehme C, Frenking G (1996) Angew Chem Int Ed Engl 35:2817CrossRefGoogle Scholar
  182. 166.
    Dapprich S, Ujaque G, Maseras F, Lledos A, Musaev DG, Morokuma K (1996) J Am Chem Soc 118:11660CrossRefGoogle Scholar
  183. 167.
    Torrent M, Deng L, Duran M, Sola M, Ziegler T (1997) Organometallics 16:13CrossRefGoogle Scholar
  184. 168.
    DelMonte AJ, Haller J, Houk KN, Sharpless KB, Singleton DA, Strassner T, Thomas AA (1997) J Am Chem Soc 119:9907CrossRefGoogle Scholar
  185. 169.
    Gisdakis P, Antonczak S, Köstlmeier S, Herrmann WA, Rösch N (1998) Angew Chem 110:2331CrossRefGoogle Scholar
  186. 170.
    Wu YD, Sun J (1998) J Org Chem 63:1752CrossRefGoogle Scholar
  187. 171.
    Criegee R, Marchand B, Wannowius H (1942) Justus Liebigs Ann Chem 550:99CrossRefGoogle Scholar
  188. 172.
    Herrmann WA, Fischer RW, Scherer W, Rauch MU (1993) Angew Chem Int Ed Engl 32:1157CrossRefGoogle Scholar
  189. 173. (a)
    Al-Ajlouni AM, Espenson JH (1995) J Am Chem Soc 117:9243CrossRefGoogle Scholar
  190. 173. (b)
    Al-Ajlouni AM, Espenson JH (1996) J Org Chem 61:3969CrossRefGoogle Scholar
  191. 174.
    Köstlmeier S, Nasluzov VA, Herrmann WA, Rösch N (1997) Organometallics 16:1786CrossRefGoogle Scholar
  192. 175.
    Sharpless KB, Townsend JM, Williams DR (1972) J Am Chem Soc 94:195Google Scholar
  193. 176.
    Mimoun H, de Roch IS, Sajus L (1970) Tetrahedron 26:37CrossRefGoogle Scholar
  194. 177.
    Thiel WR (1996) Chem Ber 129:575CrossRefGoogle Scholar
  195. 178.
    Gisdakis P, Rösch N unpublished resultsGoogle Scholar
  196. 179. (a)
    Singleton DA, Merrigan SR, Liu J, Houk KN (1997) J Am Chem Soc 119:3385CrossRefGoogle Scholar
  197. 179. (b)
    Bach RD, Estévez CM, Winter JE, Glukhovtsev MN (1998) J Am Chem Soc 120:680CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • A. Görling
    • 1
  • S. B. Trickey
    • 2
  • P. Gisdakis
    • 1
  • N. Rösch
    • 1
  1. 1.Lehrstuhl für Theoretische ChemieTechnische Universität MünchenGarchingGermany
  2. 2.Quantum Theory ProjectUniversity of FloridaGainesvilleUSA

Personalised recommendations