Introduction to Flow Control

  • Mohamed Gad-el-Hak
Part of the Lecture Notes in Physics book series (LNPMGR, volume 53)


The subject of flow control is broadly introduced in this first chapter, leaving much of the details to the subsequent chapters of the book. The ability to actively or passively manipulate a flow field to effect a desired change is of immense technological importance, and this undoubtedly accounts for the fact that the subject is more hotly pursued by scientists and engineers than any other topic in fluid mechanics. In this chapter classical tools of flow control are emphasized, leaving the more modern strategies to the following chapter. Methods of control to achieve transition delay, separation postponement, lift enhancement, drag reduction, turbulence augmentation, or noise suppression are considered. The treatment is tutorial at times, making the material accessible to the advanced graduate student in the field of fluid mechanics. Emphasis is placed on external boundary-layer flows although applicability of some of the methods reviewed for internal flows will be mentioned. An attempt is made to present a unified view of the means by which different methods of control achieve a variety of end results. Performance penalties associated with a particular method such as cost, complexity, or trade-off will be elaborated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackeret J., Ras M., Pfenninger W. (1941): Verhinderung des Turbulentwerdens einer Grenzschicht durch Absaugung. Naturwissenschaften 29, 622–623.ADSGoogle Scholar
  2. Adkins R.C. (1975): A Short Diffuser with Low Pressure Loss. J. Fluids Eng. 97, 297–302.Google Scholar
  3. Adkins R.C. (1977): Diffusers and Their Performance Improvement by Means of Boundary Layer Control. AGARD Special Course on Concepts for Drag Reduction, AGARD Report No. R-654; Paper No. 6, Rhode-Saint-Génèse, Belgium.Google Scholar
  4. Adkins R.C., Mathaus D.S., Yost J.O. (1980): The Hybrid Diffuser. ASME Paper No. 80-GT-136, New York.Google Scholar
  5. Ahuja K.K., Burrin R.H. (1984): Control of Flow Separation by Sound. AIAA Paper No. 84-2208, New York.Google Scholar
  6. Ahuja K.K., Whipkey R.R., Jones G.S. (1983): Control of Turbulent Boundary Layer Flows by Sound. AIAA Paper No. 83-0726, New York.Google Scholar
  7. Alvarez-Calderon A. (1964): Rotating Cylinder Flaps of V/STOL Aircraft. Aircraft Eng. 36, 304–309.Google Scholar
  8. Anders J.B., Jr. (1990): Outer-Layer Manipulators for Turbulent Drag Reduction. Viscous Drag Reduction in Boundary Layers, eds. D.M. Bushnell and J.N. Hefner, Progress in Astronautics & Aeronautics, vol. 123, (AIAA, Washington, D.C.), 263–284.Google Scholar
  9. Anders J.B., Hefner J.N., Bushnell D.M. (1984): Performance of Large-Eddy Breakup Devices at Post-Transitional Reynolds Numbers. AIAA Paper No. 84-0345, New York.Google Scholar
  10. Anders J.B., Walsh M.J., Bushnell D.M. (1988): The Fix for Tough Spots. Aerospace America 26, January, 24–27.Google Scholar
  11. Anders J.B., Watson R.D. (1985): Airfoil Large-Eddy Breakup Devices for Turbulent Drag Reduction. AIAA Paper No. 85-0520, New York.Google Scholar
  12. Antonia R.A., Fulachier L., Krishnamoorthy L.V., Benabid T., Anselmet F. (1988): Influence of Wall Suction on the Organized Motion in a Turbulent Boundary Layer. J. Fluid Mech. 190, 217–240.ADSGoogle Scholar
  13. Anyiwo J.C., Bushnell D.M. (1982): Turbulence Amplification in Shock Wave-Boundary Layer Interaction. AIAA J. 20, 893–899.ADSGoogle Scholar
  14. Aroesty J., Berger S.A. (1975): Controlling the Separation of Laminar Boundary Layers in Water: Heating and Suction. RAND Corporation Report No. R-1789-ARPA, Santa Monica, CA. (Also available from U.S. NTIS; Document Number AD-AO20026.)Google Scholar
  15. Aslanov P.V., Maksyutenko S.N., Povkh I.L., Simonenko A.P., Stupin A.B. (1980): Turbulent Flows of Solutions of Surface-Active Substances. Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, no. 1, 36–43.Google Scholar
  16. Atassi H.M., Gebert G.A. (1987): Modification of Turbulent Boundary Layer Structure by Large-Eddy Breakup Devices. Proc. Int. Conf. on Turbulent Drag Reduction by Passive Means, vol. 2, (Royal Aeronautical Society, London, United Kingdom), 432–456.Google Scholar
  17. Atta R., Rockwell D. (1990): Leading-Edge Vortices Due to Low Reynolds Number Flow Past a Pitching Delta Wing. AIAA J. 28, 995–1004.ADSGoogle Scholar
  18. Aubry N., Hohnes P., Lumley XL., Stone E. (1988): The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer. J. Fluid Mech. 192, 115–173.MATHADSMathSciNetGoogle Scholar
  19. Ayers R.F., Wilde M.R. (1956): An Experimental Investigation of the Aerodynamic Characteristics of a Low Aspect Ratio Swept Wing with Blowing in a Spanwise Direction from the Tips. CoEege of Aeronautics, Note No. 57, Cranfield, England.Google Scholar
  20. Bahi L., Ross J.M., Nagamatsu H.T. (1983): Passive Shock Wave/Boundary Layer Control for Transonic Airfoil Drag Reduction. AIAA Paper No. 83-0137, New York.Google Scholar
  21. Bandyopadhyay P.R. (1986): Review-Mean Flow in Turbulent Boundary Layers Disturbed to Alter Skin Friction. J. Fluids Eng. 108, 127–140.Google Scholar
  22. Bandyopadhyay P.R. (1988): Resonant Flow in Small Cavities Submerged in a Boundary Layer. Proc. R. Soc. Lond. A 420, 219–245.ADSGoogle Scholar
  23. Bar-Sever A. (1989): Separation Control on an Airfoil by Periodic Forcing. AIAA J. 27, 820–821.ADSGoogle Scholar
  24. Barger J.E., Von Winkle W.A. (1961): Evaluation of a Boundary Layer Stabilization Coating. J. Acoustical Soc. of America 33, 836.ADSGoogle Scholar
  25. Barker R.A. (1986): The Aerodynamic Effects of a Serrated Strip Near the Leading Edge of an Airfoil. M.S. Thesis, Royal Air Force College, Report No. ETN-87-99480, Cranwell, England.Google Scholar
  26. Barker S.J., Gile D. (1981): Experiments on Heat-Stabilized Laminar Boundary Layers in Water. J. Fluid Mech. 104, 139–158.ADSGoogle Scholar
  27. Barnwell R., Bushnell D.M., Nagamatsu H.T., Bahi L., Ross J. (1985): Passive Drag Control of Airfoils at Transonic Speeds. U.S. Patent No. 4,522,360.Google Scholar
  28. Barnwell R.W., Hussaini M.Y. (editors) (1992): Natural Laminar Flow and Laminar Flow Control (Springer-Verlag, Berlin).Google Scholar
  29. Batchelor G.K. (1967): An Introduction to Fluid Dynamics. (Cambridge University Press, London).MATHGoogle Scholar
  30. Batchelor G.K., Green J.T. (1972): The Determination of the Bulk Stress in a Suspension of Spherical Particles to Order c2. J. Fluid Mech. 56, 401–427.MATHADSGoogle Scholar
  31. Bauer S.X.S., Hernandez G. (1988): Reduction of Cross-Flow Shock-Induced Separation with a Porous Cavity at Supersonic Speeds. AIAA Paper No. 88-2567, New York. Baullinger N., Page V. (1989): High Altitude Long Endurance (HALE) RPV. AIAA Paper No. 89-2014, New York.Google Scholar
  32. Bechert D.W., Hoppe G., Reif W.-E. (1985): On the Drag Reduction of the Shark Skin. AIAA Paper No. 85-0546, New York.Google Scholar
  33. Benjamin T.B. (1960): Effects of a Flexible Boundary on Hydrodynamic Stability. J. Fluid Mech. 9, 513–532.MATHADSMathSciNetGoogle Scholar
  34. Bergles A.E. (1978): Enhancement of Heat Transfer. Proc. Sixth Int. Heat Transfer Conference, vol. 6, (Hemisphere, Washington, D.C.), 89–108.Google Scholar
  35. Bergles A.E., Morton L.H. (1965): Survey and Evaluation of Techniques to Augment Convective Heat Transfer. Dept. of Mech. Eng., Report No. EPL 5382-34, MET, Cambridge, MA.Google Scholar
  36. Bergles A.E., Webb R.L. (1985): A Guide to the Literature on Convective Heat Transfer Augmentation. Twenty-Third National Heat Transfer Conference: Advances in Enhanced Heat Transfer, Denver, CO.Google Scholar
  37. Berman N.S. (1978): Drag Reduction by Polymers. Ann. Rev. Fluid Mech. 10, 47–64.ADSGoogle Scholar
  38. Berman N.S., George W.K. (1974): Time Scale and Molecular Weight Distribution Contributions to Dilute Polymer Solution Fluid Mechanics. Proc. Heat Transfer Fluid Mech. Inst., eds. L.R. Davis and R.E. Wilson, (Stanford Univ. Press, CA), 348–364.Google Scholar
  39. Bernard J.J., Siestrunck R. (1959). Échanges de Chaleur dans les Écoulements Présentant des Décollements. Proc. First Int. Congr. Aero. Sci.,, eds. Th. von Karman et al., Madrid, Spain, Adv. in Aero. Sci 1 (Pergamon Press, London, England), 314–332.Google Scholar
  40. Bertelrud A., Truong T.V., Avellan F. (1982): Drag Reduction in Turbulent Boundary Layers Using Ribbons. AIAA Paper No. 82-1370, New York.Google Scholar
  41. Bnattacharjee S., Scheelke B., Troutt T.R. (1985): Modification of Vortex Interactions in a Reattaching Separated Flow. AIAA Paper No. 85-0555, New York.Google Scholar
  42. Biringen S. (1984): Active Control of Transition by Periodic Suction-Blowing. Phys. Fluids 27, 1345–1347.ADSGoogle Scholar
  43. Blackwelder R.F., Gad-el-Hak M., (1990): Method and Apparatus for Reducing Turbulent Skin Friction. United States Patent No. 4,932,612.Google Scholar
  44. Blackwelder R.F., Gad-el-Hak M., Srnsky R.A. (1987): Method and Apparatus for Controlling Bound Vortices in the Vicinity of Lifting Surfaces. U.S. Patent No. 4,697,769.Google Scholar
  45. Blake W.K., Gershfeld J.L. (1989): The Aeroacoustics of Trailing Edges. Frontiers in Experimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 457–532.Google Scholar
  46. Bogdevich V.G., Evseev A.R., Malyuga A.G., Migirenko G.S. (1977): Gas-Saturation Effect on Near-Wall Turbulence Characteristics. Second Int. Conf. on Drag Reduction, Paper No. D2, (BHRA Fluid Engineering, Cranfield, United Kingdom).Google Scholar
  47. Bogdevich V.G., Malyuga A.G. (1976): The Distribution of Skin Friction in a Turbulent Boundary Layer of Water beyond the Location of Gas Injection. Studies on the Boundary Layer Control (in Russian), eds. S.S. Kutateladze and G.S. Migirenko, (Institute of Thermophysics, Novosibirsk, U.S.S.R.), 62.Google Scholar
  48. Bradley R.G., Wray W.O. (1974): A Conceptual Study of Leading-Edge-Vortex Enhancement by Blowing. J. Aircraft 11, 33–38.Google Scholar
  49. Bradshaw P. (1969): A Note on Reverse Transition. J. Fluid Mech. 35, 387–390.ADSGoogle Scholar
  50. Bragg M.B., Gregorek G.M. (1987): Experimental Study of Airfoil Performance with Vortex Generators. J. Aircraft 24, 305–309.Google Scholar
  51. Braslow A.L., Burrows D.L., Tetervin N., Visconti F. (1951): Experimental and Theoretical Studies of Area Suction for the Control of Laminar Boundary Layer. NACA Report No. 1025, Washington, D.C.Google Scholar
  52. Briedenthal R.E., Jr., Russell D.A. (1988): Aerodynamics of Vortex Generators. NASA Contractor Report No. CR-182511, Washington, D.C.Google Scholar
  53. Brown A.C., Nawrocki H.F., Paley P.N. (1968): Subsonic Diffusers Designed Integrally with Vortex Generators. J. Aircraft 5, 221–229.Google Scholar
  54. Burd J.E. (1981): Flow Control for a High Energy Laser Turret Using Trapped Vortices Stabilized by Suction. M.Sc. Thesis, Naval Postgraduate School, Monterey, CA. (Also available from U.S. NTIS; Document Number AD-A115263.)Google Scholar
  55. Bushnell D.M. (1983): Turbulent Drag Reduction for External Flows. AIAA Paper No. 83-0227, New York.Google Scholar
  56. Bushnell D.M. (1989): Applications and Suggested Directions of Transition Research. Fourth Symp. on Numerical and Physical Aspects of Aerodynamic Flows, Long Beach, CA, 16–19 January.Google Scholar
  57. Bushnell D.M. (1994): Viscous Drag Reduction in Aeronautics. Proceedings of the Nineteenth Congress of the International Council of the Aeronautical Sciences, vol. 1, Paper No. ICAS-94-0.1, (AIAA, Washington, D.C.), XXXIII-LVI.Google Scholar
  58. Bushnell D.M., Hefner J.N. (editors) (1990): Viscous Drag Reduction in Boundary Layers, Progress in Astronautics & Aeronautics, vol. 123, (AIAA, Washington, D.C.)Google Scholar
  59. Bushnell D.M., Hefner J. N., Ash R.L. (1977): Effect of Compliant Wall Motion on Turbulent Boundary Layers. Phys. Fluids 20, S31–S48.ADSGoogle Scholar
  60. Bushnell D.M., Malik M.R. (1988): Compressibility Influences on Boundary-Layer Transition. Synvp. on Physics of Compressible Turbulent Mixing, Princeton, NJ, 25–27 October.Google Scholar
  61. Bushnell D.M., McGinley C.B. (1989): Turbulence Control in Wall Flows. Ann. Rev. Fluid Mech. 21, 1–20.ADSGoogle Scholar
  62. Bushnell D.M., Trimpi R.L. (1986): Optimum Supersonic Wind Tunnel. AIAA Paper No. 86-0773, New York.Google Scholar
  63. Bussmann K., Münz H. (1942): Die Stabilität der laminaren Reibungsschicht mit Absaugung. Jahrb. Dtsch. Luftfahrtforschung 1, 36–39.Google Scholar
  64. Calarese W., Crisler W.P., Gustafeon G.L. (1985): Afterbody Drag Reduction by Vortex Generators. AIAA Paper No. 85-0354, New York.Google Scholar
  65. Cantwell B.J. (1981): Organized Motion in Turbulent Flow, it Ann. Rev. Fluid Mech. 13, 457–515.ADSGoogle Scholar
  66. Carmichael B.H. (1974): Application of Sailplane and Low-Drag Underwater Vehicle Technology to the Long-Endurance Drone Problem. AIAA Paper No. 74-1036, New York.Google Scholar
  67. Carpenter P.W., Garrad A.D. (1985): The Hydrodynamic Stability of Flow over Kramer-Type Compliant Surfaces. Part 1. Tollmien-Schlichting Instabilities. J. Fluid Mech. 155, 465–510.MATHADSGoogle Scholar
  68. Gary A.M., Jr., Weinstein L.M., Bushnell D.M. (1980): Drag Reduction Characteristics of Small Amplitude Rigid Surface Waves. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), XXXIII-LVLGoogle Scholar
  69. Cebeci T., Chang K.C. (1978): Calculation of Incompressible Rough-Wall Boundary-Layer Flows. AIAA J. 16, 730–735.ADSGoogle Scholar
  70. Cebeci T., Egan D.A. (1989): Prediction of Transition due to Isolated Roughness. AIAA J. 27, 89–1015.Google Scholar
  71. Chang P.K. (1970): Separation of Flow, (Pergamon Press, Oxford, England).MATHGoogle Scholar
  72. Chang P.K. (1976): Control of Flow Separation, (Hemisphere, Washington, D.C.).Google Scholar
  73. Cheeseman I.C., Seed A.R. (1967): The Application of Circulation Control by Blowing to Helicopter Rotors. J. Royal Aeronautical Society 71, 451–467.Google Scholar
  74. Chen C.P., Goland Y., Reshotko E. (1979): Generation Rate of Turbulent Patches in the Laminar Boundary Layer of a Submersible. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 73–89.Google Scholar
  75. Chen D., Shi Ying Z. (1989): Control of Separation in Diffusers Using Forced Unsteadiness. AIAA Paper No. 89-1015, New York.Google Scholar
  76. Chow C.Y., Chen C.L., Huang M.K. (1985): Trapping of Free Vortex by Airfoils with Surface Suction. AIAA Paper No. 85-0446, New York.Google Scholar
  77. Cichy D.R., Harris J.W., MacKay, J.K. (1972): Flight Tests of a Rotating Cylinder Flap on a North American Rockwell YOV-10A Aircraft. NASA Contractor Report No. CR-2135, Washington, D.C.Google Scholar
  78. Collins F.G. (1979): Boundary Layer Control on Wings Using Sound and Leading Edge Serrations. AIAA Paper No. 79-1875, New York.Google Scholar
  79. Collins F.G. (1981): Boundary Layer Control on Wings Using Sound and Leading-Edge Serrations. AIAA J. 19, 129–130.ADSGoogle Scholar
  80. Collins F.G., Zelenevitz J. (1975): Influence of Sound upon Separated Flow over Wings. AIAA J. 13, 408–410.ADSGoogle Scholar
  81. Compton D.A., Johnston J.P. (1991): Streamwise Vortex Development by Pitched and Skewed Jets in a Turbulent Boundary Layer. AIAA Paper No. 91-0038, New York.Google Scholar
  82. Cook W.L., Mickey D.M., Quigley H.G. (1974): Aerodynamics of Jet Flap and Rotating Cylinder Flap STOL Concepts. AGARD Fluid Dynamics Panel on V/STOL Aerodynamics, Paper No. 10, Delft, Netherlands.Google Scholar
  83. Corke T.C., Guezennec Y., Nagib H.M. (1980): Modification in Drag of Turbulent Boundary Layers Resulting from Manipulation of Large-Scale Structures. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 128–143.Google Scholar
  84. Corke T.C., Nagib H.M., Guezennec Y. (1981): A New View on Origin, Role and Manipulation of Large Scales in Turbulent Boundary Layers. NASA Contractor Report No. 165861, Washington, D.C.Google Scholar
  85. Crighton D.G. (1984): Long-Range Acoustic Scattering by Surface Inhomogeneities Beneath a Turbulent Boundary Layer. J. Vibration, Acoustics, Stress & Reliability in Design 106, 376–382.Google Scholar
  86. Cutler A., Bradshaw P. (1986): The Interaction Between a Strong Longitudinal Vortex and a Turbulent Boundary Layer. AIAA Paper No. 86-1071, New York.Google Scholar
  87. Cutler A., Bradshaw P. (1989): Vortex/Boundary-Layer Interactions. AIAA Paper No. 89-0083, New York.Google Scholar
  88. Davidson C.J. (1985): The Experimental Investigation of the Effects of Roughness upon Aerofoil Characteristics at Low Reynolds Numbers. M.Sc. Thesis, Cranfield Institute of Technology, Cranfield, England.Google Scholar
  89. Delery, J.M. (1985): Shock Wave/Turbulent Boundary Layer Interaction and Its Control. Prog. Aerospace Sci. 22, 209–280.ADSGoogle Scholar
  90. DeMeis R. (1986): Sounding a Happy Note for Lift. Aerospace America 24, August, 10–11.Google Scholar
  91. DiPrima R.C., Swinney H.L. (1985): Instabilities and Transition in Flow Between Concentric Rotating Cylinders Hydrodynamic Instabilities and the Transition to Turbulence, eds. H.L. Swinney and J.P. Gollub, second edition, (Springer-Verlag, Berlin), 139–180.Google Scholar
  92. Donovan J.F., Selig M.S. (1989): Low Reynolds Number Airfoil Design and Wind Tunnel Testing at Princeton University. Low Reynolds Number Aerodynamics, ed. T.J. Mueller, Lecture Notes in Engineering, vol. 54, (Springer-Verlag, Berlin), 39–57.Google Scholar
  93. Dougherty N.S., Fisher D.F. (1980): Boundary Layer Transition on a 10-Degree Cone. AIAA Paper No. 80-0154, New York.Google Scholar
  94. Dowling A.P. (1983): Flow-Acoustic Interaction Near a Flexible Wall. J. Fluid Mech. 128, 181–198.MATHADSGoogle Scholar
  95. Dowling A.P. (1985): The Effect of Large-Eddy Breakup Devices on Oncoming Vorticity. J. Fluid Mech. 160, 447–463.MATHADSMathSciNetGoogle Scholar
  96. Dowling A.P. (1986): Mean Flow Effects on the Low-Wavenumber Pressure Spectrum on a Flexible Surface. J. Fluids Eng. 108, 104–108.Google Scholar
  97. Drazin P., Reid W. (1981): Hydrodynamic Stability (Cambridge University Press, London).MATHGoogle Scholar
  98. Durbin P.A., McKinzie D.J. (1987): Corona Anemometry for Qualitative Measurement of Reversing Surface Flow with Application to Separation Control by External Excitation. Proc. Forum on Unsteady Flow Separation, ed. K.N. Ghia, (ASME, New York), 15–18.Google Scholar
  99. Button R. A. (1960): The Effects of Distributed Suction on the Development of Turbulent Boundary Layers. Aeronautical Research Council R&M No. 3155, London, England.Google Scholar
  100. Eléna M. (1975): Etude des Champs Dynamiques et Thermiques d’un Ecoulement Turbulent en Conduit avec Aspiration à la Paroi. Thèse de Doctoratès Sciences, Université d’Aix-Marseille, Marseille, France.Google Scholar
  101. Eléna M. (1984): Suction Effects on Turbulence Statistics in a Heated Pipe Flow. Phys. Fluids 27, 861–866.ADSGoogle Scholar
  102. Ely W.L., Berrier F.C. (1975): Performance of Steady and Intermittent Blowing Jet Flaps and Spanwise Upper Surface Slots. Air Force Flight Dynamics Laboratory Report No. AFFDL-TR-75-128, Wright-Patterson Air Force Base, OH.Google Scholar
  103. Eppler R., Somers D.M. (1985): Airfoil Design for Reynolds Numbers between 50,000 and 500,000. Proc. Conf. on Low Reynolds Number Airfoil Aerodynamics, ed. T.J. Mueller, (University of Notre Dame, Notre Dame, IN), 1–14.Google Scholar
  104. Ericsson L.E. (1967): Comment on Unsteady Airfoil Stal. J. Aircraft 4, 478–480.Google Scholar
  105. Ericsson L.E. (1988): Moving Wall Effects in Unsteady Flow. J. Aircraft 25, 977–990.Google Scholar
  106. Eriksson L. J., Allie M.C., Bremigan C.D., Gilbert J.A. (1988): Active Noise Control and Specificiations for Fan Noise Problems. Proc. Noise Control Design: Methods and Practice, ed. J.S. Bolton, (Noise Control Foundation, Poughkeepsie, NY), 273–278.Google Scholar
  107. Favre A., Dumas R., Verollet E., Coantic M. (1966): Couche Limite Turbulente suc Paroi Poreuse avec Aspiration. J. Mécanique 5, 3–28.Google Scholar
  108. Feir J.B. (1965): The Effects of an Arrangement of Vortex Generators Installed to Eliminate Wind Tunnel Diffuser Separation. Institute for Aerospace Studies, University of Toronto, UTIAS Technical Note No. 87, Toronto, Canada.Google Scholar
  109. Ffowcs Williams J.E. (1965): Sound Radiation from Turbulent Boundary Layers Formed on Compliant Surfaces. J. Fluid Mech. 22, 347–358.ADSMathSciNetGoogle Scholar
  110. Ffowcs Williams J.E. (1977): Aeroacoustics. Ann. Rev. Fluid Mech. 9, 447–468.ADSGoogle Scholar
  111. Fiedler H.E., Fernholz H.H. (1990): On Management and Control of Turbulent Shear Flows. Prog. Aerospace Sci. 27, 305–387.MATHADSGoogle Scholar
  112. Fiedler H.E., Glezer A., Wygnanski I. (1988): Control of Plane Mixing Layer: Some Novel Experiments. Current Trends in Turbulence Research, eds. H. Branover, M. Mond and Y. Unger, Progress in Astronautics & Aeronautics, vol. 112, (AIAA, Washington, D.C.), 30–64.Google Scholar
  113. Flatt J. (1961): The History of Boundary Layer Control Research in the United States of America. Boundary Layer and Flow Control, ed. G.V. Lachmann, vol. 1, (Pergamon Press, Oxford, England), 122–143.Google Scholar
  114. Flettner A. (1924): Die Anwendung der Erkenntnisse der Aerodynamik zum Windantrieb von Schiffen. Jb. Schiffbautech. Ges. 25, 222–251.Google Scholar
  115. Francis M.S., Keesee J.E., Lang J.D., Sparks G.W., Sisson G.E. (1979): Aerodynamic Characteristics of an Unsteady Separated Flow. AIAA J. 17 1332–1339.ADSGoogle Scholar
  116. Frick C.W., McCullough C.B. (1942): Tests of a Heated Low Drag Airfoil. NACA ARR, Washington, D.C., December.Google Scholar
  117. Gad-el-Hak M. (1986a): The Use of the Dye-Layer Technique for Unsteady Flow Visualization. J. Fluids Eng. 108, 34–38.Google Scholar
  118. Gad-el-Hak M. (1986b): Boundary Layer Interactions With Compliant Coatings: An yer. J. Appl. Mech. Rev. 39, 206–212.Google Scholar
  119. Gad-el-Hak M. (1986c): The Response of Elastic and Viscoelastic Surfaces to a Turbulent Boundary Layer. J. Appl. Mech. 53, 206–212.Google Scholar
  120. Gad-el-Hak M. (1987): Compliant Coatings Research: A Guide to the Experimentalist. J. Fluids & Struct. 1, 55–70.Google Scholar
  121. Gad-el-Hak M. (1988a): Review of Flow Visualization Techniques for Unsteady Flows. Flow Visualization IV, ed. C. Véret, (Hemisphere, Washington, D.C.), 1–12.Google Scholar
  122. Gad-el-Hak M. (1988b): Visualization Techniques for Unsteady Flows: An Overview. J. Fluids Eng. 110, 231–243.Google Scholar
  123. Gad-el-Hak M. (1994): Interactive Control of Turbulent Boundary Layers: A Futuristic Overview. AIAA J. 32, 1753–1765.ADSGoogle Scholar
  124. Gad-el-Hak M. (1995): Questions in Fluid Mechanics: Stokes’ Hypothesis for a Newtonian, Isotropic Fluid. J. Fluids Eng. 117, 3–5.Google Scholar
  125. Gad-el-Hak M. (1996a): Compliant Coatings: A Decade of Progress. Appl. Mech. Rev. 49, no. 10, part 2, S147–S157.Google Scholar
  126. Gad-el-Hak M. (1996b): Modern Developments in Flow Contro. Appl. Mech. Rev. 49, 365–379.Google Scholar
  127. Gad-el-Hak M., Blackwelder R.F. (1989): Selective Suction from a Delta Wing. AIAA J. 23, 961–962.ADSGoogle Scholar
  128. Gad-el-Hak M., Blackwelder R.F. (1987a): Control of the Discrete Vortices from a Delta Wing. AIAA J. 25, 1042–1049.ADSGoogle Scholar
  129. Gad-el-Hak M., Blackwelder R.F. (1987b): A Drag Reduction Method for Turbulent Boundary Layers. AIAA Paper No. 87-0358, Washington, D.C.Google Scholar
  130. Gad-el-Hak M., Blackwelder R.F. (1987c): Simulation of Large-Eddy Structures in a Turbulent Boundary Layer. AIAA J. 25, 1207–1215.ADSGoogle Scholar
  131. Gad-el-Hak M., Blackwelder R.F. (1989): Selective Suction for Controlling Bursting Events in a Boundary Layer AIAA J. 27, 308–314.ADSGoogle Scholar
  132. Gad-el-Hak M., Blackwelder R.F., Riley J.J. (1984): On the Interaction of Compliant Coatings With Boundary Layer Flows. J. Fluid Mech. 140, 257–280.ADSGoogle Scholar
  133. Gad-el-Hak M., Ho C.-M. (1985): The Pitching Delta Wing. AIAA J. 23, 1660–1665.ADSGoogle Scholar
  134. Gad-el-Hak M., Ho C.-M. (1986a): Unsteady Vortical Flow Around Three-Dimensional Lifting Surfaces. AIAA J. 24, 713–721.ADSGoogle Scholar
  135. Gad-el-Hak M., Ho C.-M. (1986b): Unsteady Flow Around An Ogive-Cylinder. J. Aircraft 23, 520–528.Google Scholar
  136. Gadd G.E. (1960): Boundary Layer Separation in the Presence of Heat Transfer. NATO Advisory Group for Aerospace Research and Development, AGARD Report No. R-280, Rhode-Saint-Génèse, Belgium.Google Scholar
  137. Gadd G.E., Cope W.F., Attridge J.L. (1958): Heat-Transfer and Skin-Friction Measurements at a Mach Number of 2.44 for a Turbulent Boundary Layer on a Flat Surface and in Regions of Separated Flow. Aeronautical Research Council R&M No. 3148, London, England.Google Scholar
  138. Gadetskii V.M., Serebriiskii I.A.M., Fomin V.M. (1972): Investigation of the Influence of Vortex Generators on Turbulent Boundary Layer Separation. Uchenye Zapiski TSAGI 3, 22–28.Google Scholar
  139. Gampert B., Homann K., Rieke H.B. (1980): The Drag Reduction in Laminar and Turbulent Boundary Layers by Prepared Surfaces with Reduced Momentum Transfer. Israel J. Technology 18, 287–292.ADSGoogle Scholar
  140. Gartling D.K. (1970): Tests of Vortex Generators to Prevent Separation of Supersonic Flow in a Compression Corner. Applied Research Laboratory, University of Texas, Report No. ARL-TR-70-44, Austin, TX. (Also available from U.S. NTIS; Document Number AD-734154.)Google Scholar
  141. Gebert G.A. (1988): Turbulent Boundary Layer Modification by Streamlined Devices. Ph.D. Thesis, University of Notre Dame, Notre Dame, IN.Google Scholar
  142. Gedney C.J. (1983): The Cancellation of a Sound-Excited Tollmien-Schlichting Wave with Plate Vibration. Phys. Fluids 26, 1158–1160.ADSGoogle Scholar
  143. Gol’d Fel’d M.A., Zatoloka V.V. (1979): On the Improvement of Separating Properties of a Turbulent Boundary Layer as a Result of the Effect of a Shock Wave. Izvestiya Sibirskogo Otdeleniya, Akademii Nank 3, 40–47.Google Scholar
  144. Goldstein M.E. (1984): Generation of Instability Waves in Flows Separating from Smooth Surfaces. J. Fluid Mech. 145, 71–94.MATHADSGoogle Scholar
  145. Goldstein M.E., Hultgren L.S. (1989): Boundary-Layer Receptivity to Long-Wave Free-Stream Disturbances. Ann. Rev. Fluid Mech. 21, 137–166.ADSMathSciNetGoogle Scholar
  146. Goodman W.L. (1985): Emmons Spot Forcing for Turbulent Drag Reduction. AIAA J. 23, 155–157.ADSGoogle Scholar
  147. Granville P.S. (1979): Drag of Underwater Bodies. Hydroballistics Design Handbook, vol. 1, (Naval Sea Systems Command, SEAHAC TR 79-1, Washington, D.C.), 309–341.Google Scholar
  148. Gratzer L.B. (1971): Analysis of Transport Applications for High Lift Schemes. AGARD Course on Assessment of Lift Augmentation Devices, eds. P.E. Colin and J. Williams, AGARD-LS-43-71, Paper No. 7, Rhode-Saint-Génèse, Belgium.Google Scholar
  149. Gregory N., Stuart J.T., Walker W.S. (1955): On the Stability of Three-Dimensional Boundary Layers with Applications to the Flow due to a Rotating Disk. Phil. Trans. R. Soc. London A 248, 155–199.ADSMathSciNetMATHGoogle Scholar
  150. Gutmark E., Ho C.-M. (1986): Visualization of a Forced Elliptical Jet. AIAA J. 24, 684–685.ADSGoogle Scholar
  151. Gutmark E.J., Schadow K.C., Yu K.H. (1995): Mixing Enhancement in Supersonic Free Shear Flows. Annu. Rev. Fluid Mech. 27, 375–417.ADSGoogle Scholar
  152. Görtier H. (1955): Dreidimensionales zur Stabilittstheorie laminarer Grenzschichten. ZAMM 35, 362–363.Google Scholar
  153. Haight C.H., Reed T.D., Morland B.T. (1974): Design Studies of Transonic and STOL Airfoils with Active Diffusion Control. Advanced Technology Center Report No. ATC-B-94300/4CR-24, Dallas, TX. (Also available from U.S. NTIS; Document Number AD-A011928/9.)Google Scholar
  154. Harris C.D., Bartlett D.W. (1972): Wind-Tunnel Investigation of Effects of Underwing Leading Edge Vortex Generators on a Supercritical-Wing Research Airplane Configuration. NASA Technical Memorandum No. TMX-2471, Washington, D.C.Google Scholar
  155. Harvey W.D. (1986): Low-Reynolds Number Aerodynamics Research at NASA Langley Research Center. Proc. Int. Conf. on Aerodynamics at Low Reynolds Numbers, vol II, Royal Aeronautical Society, London, England, 19.1–19.49.Google Scholar
  156. Harvey W.D., Bushnell D.M., Beckwith I.E. (1969): On the Fluctuating Properties of Turbulent Boundary Layers for Mach. Numbers up to 9.0. NASA Technical Document No. TND-5496, Washington, D.C.Google Scholar
  157. Hayakawa L., Squire L.C. (1982): The Effect of the Upstream Boundary Layer State on the Shock Interaction at a Compression Corner. J. Fluid Mech. 122, 369–394.ADSGoogle Scholar
  158. Heckl M. (1988): The Use of Mathematical Methods in Noise Control Design. Proc. Noise Control Design; Methods and Practice, ed. J.S. Bolton, (Noise Control Foundation, Poughkeepsie, NY), 27–38.Google Scholar
  159. Hefner J.N. (1988): Dragging Down Fuel Costs. Aerospace America 26, January, 14–16.Google Scholar
  160. Hefner J.N., Anders J.B., Bushnell D.M. (1983): Alteration of Outer Flow Structures for Turbulent Drag Reduction. AIAA Paper No. 83-0293, New York.Google Scholar
  161. Hefner J.N., Sabo F.E. (editors) (1987): Research in Natural Laminar Flow and Laminar Flow Control, part 1, NASA Conference Proceedings No. CP-2487, Washington, D.C.Google Scholar
  162. Hefner J.N., Weinstein L.M., Bushnell D.M. (1980): Large-Eddy Breakup Scheme for Turbulent Viscous Drag Reduction. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 110–127.Google Scholar
  163. Hendricks E.W., Ladd D.M. (1983): Effect of Surface Roughness on the Delayed Transition on 9:1 Heated Ellipsoid. AIAA J. 21, 1406–1409.ADSGoogle Scholar
  164. Hendricks E.W., Lawler J.V., Home M.P., Handler R.A., Swearingen J.D. (1989): Experiments in Drag-Reducing Polymer Flows. Advances in Fluid Mechanics Measurements, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 45, (Springer-Verlag, Berlin), 535–568.Google Scholar
  165. Henry J.R., Wood C.C., Wilbur S.W. (1956): Summary of Subsonic Diffuser Data. NACA Report No. RML-56F05, Washington, D.C.Google Scholar
  166. Hinch E.J. (1977): Mechanical Models of Dilute Polymer Solutions in Strong Flows. Phys. Fluids 20, S22–S30.ADSGoogle Scholar
  167. Hinze J. O. (1975): Turbulence, second edition, (McGraw-Hill, New York).Google Scholar
  168. Hoffmann J.A. (1981): Effects of Free Stream Turbulence on Diffuser Performance. J. Fluids Eng. 103, 385–390.Google Scholar
  169. Hoffmann J.A., Kassir S.M., Larwood S.M. (1988): The Influence of Free Stream Turbulence on Turbulent Boundary Layers with Mild Adverse Pressure Gradients. NASA Contractor Report No. CR-184677, Washington, D.C.Google Scholar
  170. Holmes B. J. (1988): NLF Technology is Ready to Go. Aerospace America 26, January, 16–20.Google Scholar
  171. Holstein H. (1940): Messungen zur Laminarhaltung der Grenzschicht an einem Flügel. Lilienthal-Bericht S10, 17–27.Google Scholar
  172. Hooshmand A., Youngs R., Wallace J.M., Balint J.-L. (1983): An Experimental Study of Changes in the Structure of a Turbulent Boundary Layer Due to Surface Geometry Changes. AIAA Paper No. 83-0230, New York.Google Scholar
  173. Horstmann K.-H., Quast A. (1981): Widerstandsverminderung durch Blasturbulatoren. DFVLR Report No. FB-81-33, Braunschweig, Federal Republic of Germany.Google Scholar
  174. Hough G.R. (editor) (1980): Viscous Flow Drag Reduction. Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York).Google Scholar
  175. Howard F.G., Hefner J.N., Srokowski A.J. (1975): Multiple Slot Skin Friction Reduction. J. Aircraft 12, 753–754.Google Scholar
  176. Howard F.G., Goodman W.L. (1985): Axisymmetric Bluff-Body Drag Reduction Through Geometrical Modification. J. Aircraft 22, 516–522.Google Scholar
  177. Howard F.G., Goodman W.L. (1987): Drag Reduction on a Bluff Body at Yaw Angles to 30 Degrees. J. Spacecraft & Rockets 24, 179–181.ADSGoogle Scholar
  178. Howarth L. (1938): On the Solution of the Laminar Boundary Layer Equations. Proc. R. Soc. Lond. Ser. A 164, 547–579.ADSMATHGoogle Scholar
  179. Hoyt J.W. (1972): Turbulent Flow of Drag-Reducing Suspensions. Naval Undersea Center Report No. TP 299, San Diego, CA.Google Scholar
  180. Hoyt J.W. (1979): Polymer Drag Reduction-A Literature Review. Second Int. Conf. on Drag Reduction, Paper No. Al, (BHRA Fluid Engineering, Cranfield, United Kingdom).Google Scholar
  181. Hsiao F.-B., Liu C.-F., Shyu J.-Y. (1990): Control of Wall-Separated Flow by Internal Acoustic Excitation. AIAA J. 28, 1440–1446.ADSGoogle Scholar
  182. Huang L.S., Maestrello L., Bryant T.D. (1987): Separation Control over an Airfoil at High Angles of Attack by Sound Emanating from the Surface. AIAA Paper No. 87-1261, New York.Google Scholar
  183. Huerre P., Monkewitz P.A. (1990): Local and Global Instabilities in Spatially Developing Flows. Annu. Rev. Fluid Mech. 22, 473–537.ADSMathSciNetGoogle Scholar
  184. Hunter P.A., Johnson H.I. (1954): A Flight Investigation of the Practical Problems Associated with Porous Leading-Edge Suction. NACA Technical Note No. TN-3062, Washington, D.C.Google Scholar
  185. Hurley D.G. (1961): The Use of Boundary Layer Control to Establish Free Streamline Flows. Boundary Layer and Flow Control, ed. G.V. Lachmann, vol. 1, (Pergamon Press, New York), 295–341.Google Scholar
  186. Huyer S.A., Robinson M.C., Luttges M.W. (1990): Unsteady Aerodynamic Loading Produced by a Sinusoidally Oscillating Delta Wing. AIAA Paper No. 90-1536, New York.Google Scholar
  187. Iglisch R. (1944): Exakte Berechnung der laminaren Reibungsschicht an der längsangeströmten ebenen Platte mit homogener Absaugung. Schr. Dtsh. Akad, Luftfahrtforschung 8B, 1–51.Google Scholar
  188. Ulingworth C.R. (1954): The Effect of Heat Transfer on the Separation of a Compressible Laminar Boundary Layer. Quart. J. Mech. Appl. Math. 7, 8–34.MathSciNetGoogle Scholar
  189. Inger G.R., Siebersma T. (1988): Computational Simulation of Vortex Generator Effects on Transonic Shock/Boundary Layer Interaction. AIAA Paper No. 88-2590, New York.Google Scholar
  190. Isomoto K., Honami S. (1989): The Effect of Inlet Turbulence Intensity on the Reattachment Process over a Backward-Facing Step. J. Fluids Eng. 111, 87–92.CrossRefGoogle Scholar
  191. Itoh N. (1987): Another Route to the Three-Dimensional Development of Tollmien-SchlichtingWaves with Finite Amplitude. J. Fluid Mech. 181, 1–16.MATHADSGoogle Scholar
  192. Johansen J.B., Smith C.R. (1986): The Effects of Cylindrical Surface Modifications on Turbulent Boundary Layers. AIAA J. 24, 1081–1087.ADSGoogle Scholar
  193. Johnson W.S., Tennant J.S., Stamps R.E. (1975): Leading-Edge Rotating Cylinder for Boundary Layer Control on Lifting Surfaces. J. Hydronautics 9, 76–78.ADSGoogle Scholar
  194. Johnston J., Nishi M. (1989): Vortex Generator Jets-A Means for Passive and Active Control of Boundary Layer Separation. AIAA Paper No. 89-0564, New York.Google Scholar
  195. Johnston J., Nishi M. (1990): Vortex Generator Jets-Means for Flow Separation Control. AIAA J. 28, 989–994.ADSGoogle Scholar
  196. Kachanov Y.S., Koslov V.V., Levchenko V. Ya. (1974): Experimental Study of the Influence of Cooling on the Stability of Laminar Boundary Layers. Izvestia Sibirskogo Otdielenia Ak. Nauk SSSR, Seria Technicheskikh Nauk, Novosibirsk, no. 8–2, 75–79.Google Scholar
  197. Kandil O.A., Chuang H.A. (1988): Unsteady Vortex-Dominated Flows around Maneuvering Wings over a Wide Range of Mach Numbers. AIAA Paperr No. 88-0317, New York.Google Scholar
  198. Kannberg L.D. (1988): The Urgency Will Return. Mechanical Engineering 110, 33.Google Scholar
  199. Kaplan R. E. (1964): The Stability of Laminar Incompressible Boundary Layers in the Presence of Compliant Boundaries. Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  200. Katz Y., Nishri B., Wygnanski I. (1989a): The Delay of Turbulent Boundary Layer Separation by Oscillatory Active Control. AIAA Paper No. 89-0975, New York.Google Scholar
  201. Katz Y., Nishri B., Wygnanski I. (1989b): The Delay of Turbulent Boundary Layer Separation by Oscillatory Active Control. Phys. of Fluids 1, 179–181.ADSGoogle Scholar
  202. Kays W.M., Crawford M.E. (1993): Convective Heat and Mass Transfer, third edition, (McGraw-Hill, New York).Google Scholar
  203. Kendall J.M. (1970): The Turbulent Boundary Layer over a Wall with Progressive Surface Waves. J. Fluid Mech. 41, 259–281.ADSGoogle Scholar
  204. Kentfield J.A.C. (1985a): Drag Reduction of Controlled Separated Flows. AIAA Paper No. 85-1800, New York.Google Scholar
  205. Kentfield J.A.C. (1985b): Short, Multi-Step, Afterbody Fairings. J. Aircraft 21 Google Scholar
  206. Kidd J.A., Wikoff D., Cottrell C.J. (1990): Drag Reduction by Controlling Flow Separation Using Stepped Afterbodies. J. Aircraft 27, 564–566.Google Scholar
  207. Kim H.T., Kline S.J., Reynolds W.C. (1971): The Production of Turbulence Near a Smooth Wall in a Turbulent Boundary Layer. J. Fluid Mech. 50, 133–160.ADSGoogle Scholar
  208. Kind R.J. (1967): A Proposed Method of Circulation Control. Ph.D. Dissertation, Cambridge University, Cambridge, England.Google Scholar
  209. Klebanoff P.S., Schubauer G.B., Tidstrom K.D. (1955): Measurements of the Effect of Two-Dimensional and Three-Dimensional Roughness Elements on Boundary-Layer Transition. J. Aero. Sci. 22, 803–804.Google Scholar
  210. Klebanoff P.S., Tidstrom K.D., Sargent L.M. (1962): The Three-Dimensional Nature of Boundary Layer Instability. J. Fluid Mech. 12, 1–34.MATHADSGoogle Scholar
  211. Koga D. J., Reisenthel P., Nagib H.M. (1984): Control of Separated Flowfields Using Forced Unsteadiness. Illinois Institute of Technology, Fluids & Heat Transfer Report No. R84-1, Chicago, IL.Google Scholar
  212. Kosecoff M.A., Ko D.R.S., Merkle C.L. (1976): An Analytical Study of the Effect of Surface Roughness on the Stability of a Heated Water Boundary Layer. Dynamics Technology, Inc., Final Report No. PDT 76-131, Torrance, CA.Google Scholar
  213. Koval’nogov S.A., Fomin V.M., Shapovalov G.K. (1987): Experimental Study of the Possibility of Passive Control of Shock-Boundary Layer Interactions. Uchemye kZapiski TSAGI 18, 112–116.Google Scholar
  214. Krall K.M., Haight C.H. (1972): Wind Tunnel Tests of a Trapped Vortex-High Lift Airfoil. Advanced Technology Center Report No. ATC-B-94300/3TR-10, Dallas, TX. (Also available from U.S. NTIS; Document Number AD-762 077.)Google Scholar
  215. Kramer M.O. (1960): Boundary Layer Stabilization by Distributing Damping. J. Am. Soc. Naval Engrs. 72, 25–33.Google Scholar
  216. Kuethe A.M. (1973): Boundary Layer Control of Flow Separation and Heat Exchange. U.S. Patent No. 3,741,285.Google Scholar
  217. Kukainis J. (1969): Effects of Three-Dimensional Boundary Layer Control Devices on a Quasi-Two-Dimensional Swept Wing at High Subsonic Speeds. Arnold Engineering Development Center Technical Report No. AEDC-TR-69-251, Arnold Air Fore Base, TN.Google Scholar
  218. Lachmann G.V. (1961): Boundary Layer and Flow Control, volumes 1 and 2, (Pergamon Press, New York).MATHGoogle Scholar
  219. Ladd D.M., Hendricks E.W. (1988): Active Control of 2-D Instability Waves on an Axisymmetric Body. Exp. Fluids 6, 69–70.Google Scholar
  220. Landahl M.T. (1962): On the Stability of a Laminar Incompressible Boundary Layer over a Flexible Surface. J. Fluid Mech. 13, 609–632.MATHADSGoogle Scholar
  221. Landahl M.T. (1973): Drag Reduction by Polymer Addition. Proc. 13th IUTAM Congress, eds. E. Becker and G.K. Mikhailov, (Springer-Verlag, Berlin), 177–199.Google Scholar
  222. Landahl M.T. (1977): Dynamics of Boundary Layer Turbulence and the Mechanism of Drag Reduction. Phys. Fluids 20, S55–S63.ADSGoogle Scholar
  223. Landau L.D., Lifshitz E.M. (1987): Fluid Mechanics, second edition, translated from the Russian, (Pergamon Press, Oxford).MATHGoogle Scholar
  224. Lange R.H. (1954): Present Status of Information Relative to the Prediction of Shock-Induced Boundary Layer Separation. NACA Technical Note No. TN-3065, Washington, D.C.Google Scholar
  225. Lankford J.L. (1960): Investigation of the Flow over an Axisymmetric Compression Surface at High Mach Numbers. U.S. Naval Ordnance Laboratory Report No. 6866, Corona, CA.Google Scholar
  226. Lankford J.L. (1961): The Effect of Heat Transfer on the Separation of Laminar Flow over Axisymmetric Compression Surfaces: Preliminary Results at Mach No. 6.78. U.S. Naval Ordnance Laboratory Report No. 7402, Corona, CA.Google Scholar
  227. Lauchle G.C., Gurney G.B. (1984): Laminar Boundary-Layer Transition on a Heated Underwater Body. J. Fluid Mech. 144, 79–101.ADSGoogle Scholar
  228. Laufer J. (1975): New Trends in Experimental Turbulence Research. Ann. Rev. Fluid Mech. 7, 307–326.ADSGoogle Scholar
  229. Lee C.S., Tavella D.A., Wood N.J., Roberts L. (1986): Flow Structure of Lateral Wing-Tip Blowing. AIAA Paper No. 86-1810, New York.Google Scholar
  230. Lee C.S., Tavella D.A., Wood N.J., Roberts L. (1989): Flow Structure and Scaling Laws in Lateral Wing-Tip Blowing. AIAA J. 2, 1002–1007.ADSGoogle Scholar
  231. Lee D.G. (1974): Subsonic Force Characteristics of a Low Aspect Ratio Wing Incorporating a Spinning Cylinder. DTNSRDC Report No. ASED-329, Bethesda, MD. (Also available from U.S. NTIS; Document Number AD-AOO11135.)Google Scholar
  232. Lee M., Ho C.-M. (1989): Vortex Dynamics of Delta Wings. Frontiers in Experimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 365–428.Google Scholar
  233. Lee M., Ho C.-M. (1990): Lift Force of Delta Wings. Appl. Mech. Rev. 43, 209–221.Google Scholar
  234. Lee W.K., Vaseleski R.C., Metzner A.B. (1974): Turbulent Drag Reduction in Polymeric Solutions Containing Suspended Fibers. AIChE J. 20, 128–133.Google Scholar
  235. Lees L. (1947): The Stability of the Laminar Boundary Layer in a Compressible Fluid. NACA Report No. 876, Washington, D.C.Google Scholar
  236. Legner H.H. (1984): A Simple Model for Gas Bubble Drag Reduction. Phys Fluids 27, 2788–2790.ADSGoogle Scholar
  237. Liandrat J., Aupoix B., Cousteix T. (1986): Calculation of Longitudinal Vortices embedded in a Turbulent Boundary Layer. Fifth Symposium on Turbulent Shear Flows, eds. F. Durst, B.E. Launder, F.W. Schmidt and J.H. Whitelaw, (Springer-Verlag, Berlin), 7.17–7.22.Google Scholar
  238. Libby P.A. (1954): Method for Calculation of Compressible Laminar Boundary Layer with Axial Pressure Gradient and Heat Transfer. NACA Technical Note No. TN-3157, Washington, D.C.Google Scholar
  239. Liebeck R.H. (1978): Design of Subsonic Airfoils for High Lift. J. Aircraft 15, 547–561.Google Scholar
  240. Liepmann H.W., Brown G.L., Nosenchuck D.M. (1982): Control of Laminar Instability Waves Using a New Technique. J. Fluid Mech. 118, 187–200.ADSGoogle Scholar
  241. Liepmann H.W., Fila G.H. (1947): Investigations of Effects of Surface Temperature and Single Roughness Elements on Boundary Layer Transition. NACA Report No. 890, Washington, D.C.Google Scholar
  242. Liepmann H.W., Nosenchuck D.M. (1982): Active Control of Laminar-Turbulent Transition. J. Fluid Mech. 118, 201–204.ADSGoogle Scholar
  243. Lighthill M.J. (1952): On Sound Generated Aerodynamically. I. General Theory. Proc. Roy.Soc. London A 211, 564–587.MATHADSMathSciNetGoogle Scholar
  244. Lighthill M. J. (1963): Introduction-Boundary Layer Theory. Laminar Boundary Layers, ed. L. Rosenhead, (Clarendon Press, Oxford), 46–113.Google Scholar
  245. Lighthill M.J. (1973): On the Weis-Fogh Mechanism of Lift Generation. J. Fluid Mech. 60, 1–17.MATHADSGoogle Scholar
  246. Lighthill, M.J. (1975): Aerodynamic Aspects of Animal Flight. Swimming and Flying in Nature, eds. T.Y. Wu, C. J. Brokaw and C. Brennen, vol. 2, (Plenum, New York), 423–491.Google Scholar
  247. Lin J.C., Ash R.L. (1986): Wall Temperature Control of Low-Speed Body Drag. J. Aircraft 23, 93–94.ADSGoogle Scholar
  248. Lin J.C., Howard F.G. (1989): Turbulent Flow Separation Control Through Passive Techniques. AIAA Paper No. 89-0976, New York.Google Scholar
  249. Lin J.C., Howard F.G., Bushnell D.M., Selby G.V. (1990a): Investigation of Several Passive and Active Methods for Turbulent Flow Separation Control. AIAA Paper No. 90-1598, New York.Google Scholar
  250. Lin J.C., Howard F.G., Selby G.V. (1990b): Control of Turbulent Separated Flow over a Rearward-Facing Ramp Using Longitudinal Grooves. J. Aircraft 27, 283–285.ADSGoogle Scholar
  251. Lin J.C., Weinstein L.M., Watson R.D., Balasubramanian R. (1983): Turbulent Drag Characteristic of Small Amplitude Rigid Surface Waves. AIAA Paper No. 83-0228, New York.Google Scholar
  252. Linke W. (1942): Über den Strömungswiderstand einer beheizten ebenen Platte. Luftfahrtforschung 19, 157–160.Google Scholar
  253. Lissaman P.B.S. (1983): Low-Reynolds-Number Airfoils. Ann. Rev. Fluid Mech. 15, 223–239.ADSGoogle Scholar
  254. Liu C.K., Kline S. J., Johnston J.P. (1966): Experimental Study of Turbulent Boundary Layer on Rough Walls. Department of Mechanical Engineering Report No. MD-15, Stanford University, Stanford, CA.Google Scholar
  255. Lowell R.L., Reshotko E. (1974): Numerical Study of the Stability of a Heated Water Boundary Layer. Case Western University Report No. FTAS/TR-73-93, Cleveland, OH.Google Scholar
  256. Ludwig G.R. (1964): An Experimental Investigation of Laminar Separation from a Moving Wall. AIAA Paper No. 64-6, New York.Google Scholar
  257. Lumley J.L. (1969): Drag Reduction by Additives. Ann. Rev. Fluid Mech. 1, 367–384.ADSGoogle Scholar
  258. Lumley J.L. (1973): Drag Reduction in Turbulent Flow by Polymer Additives. J. Polym. Sci.: Macromol. Rev. 7, 263–290.Google Scholar
  259. Lumley J.L. (1977): Drag Reduction in Two Phase and Polymer Flows. Phys. Fluids 20, S64–S71.ADSGoogle Scholar
  260. Lumley J.L. (1978): Two-Phase and Non-Newtonian Flows. Turbulence, ed. P. Bradshaw, second edition, (Springer-Verlag, Berlin), 289–324.Google Scholar
  261. Lumley J.L. (1983): Turbulence Modeling. J. Applied Mechanics 105, 1097–1103.CrossRefGoogle Scholar
  262. Lumley J.L. (1987): Turbulence Modeling. Proc. Wth U.S. National Cong, of Applied Mechanics, ed. J.P. Lamb, (ASME, New York), 33–39.Google Scholar
  263. Lumley J.L., Kubo I. (1984): Turbulent Drag Reduction by Polymer Additives: A Survey. Sibley School of Mechanical and Aerospace Engineering Report No. FDA-84-07, Cornell University, Ithaca, NY.Google Scholar
  264. Luttges M.W. (1989): Accomplished Insect Fliers. Frontiers in Experimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 429–456.Google Scholar
  265. Luttges M.W., Somps C, Kliss M., Robinson M. (1984): Unsteady Separated Flows: Generation and Use by Insects. Unsteady Separated Flows, eds. M.S. Francis and M.W. Luttges, (University of Colorado, Boulder, CO), 127–136.Google Scholar
  266. Mabey D.G. (1988): Design Features Which Influence Flow Separations on Aircraft. Aero. J. 92, 409–415.Google Scholar
  267. Macha J.M., Norton D.J., Young J.C. (1972): Surface Temperature Effect on Subsonic Stall. AIAA Paper No. 72-960, New York.Google Scholar
  268. Madavan N.K., Deutsch S., Merkle C.L. (1984): Reduction of Turbulent Skin Friction by Microbubbles. Phys. Fluids 27, 356–363.ADSGoogle Scholar
  269. Madavan N.K., Deutsch S., Merkle C.L. (1985): Measurements of Local Skin Friction in a Microbubble-Modified Turbulent Boundary Layer. J. Fluid Mech. 156, 237–256.ADSGoogle Scholar
  270. Maestrello L., Badavi F.F., Noonan K.W. (1988): Control of the Boundary Layer Separation about an Airfoil by Active Surface Heating. AIAA Paper No. 88-3545-CP, New York.Google Scholar
  271. Magnus G. (1852): On the Deflection of a Projectile. Abhandlung der Akademie der Wissenschaften, Berlin, Germany.Google Scholar
  272. Malik M.R., Weinstein L.M., Hussaini M.Y. (1983): Ion Wind Drag Reduction. AIAA Paper No. 83-0231, New York.Google Scholar
  273. Maltby R.L. (1962): Flow Visualization in Wind Tunnels Using Indicators. NATO Advisory Group for Aerospace Research and Development, AGARDograph No. 70, Rhode-Saint-Génèse, Belgium.Google Scholar
  274. Mangalam S.M., Bar-Sever A., Zaman K.B.M.Q., Harvey W.D. (1986): Transition and Separation Control on a Low-Reynolds number Airfoil. Proc. Int. Gonf. on Aerodynamics at Low Reynolds Numbers, vol. I, (Royal Aeronautical Society, London, England), 10.1–10.19.Google Scholar
  275. Marchman J.F., Manor D., Plentovich. E.B. (1980): Performance Improvement of Delta Wings at Subsonic Speeds Due to Vortex Flaps. AIAA Paper No. 80-1802, New York.Google Scholar
  276. Maxworthy T. (1979): Experiments on the Weis-Fogh Mechanism of Lift Generation by Insects in Hovering Flight. Part 1. Dynamics of the ‘Fling’. J. Fluid Mech. 93, 47–63.ADSGoogle Scholar
  277. Maxworthy T. (1981): The Fluid Dynamics of Insect Flight. Ann. Rev. Fluid Mech. 13, 329–350.ADSGoogle Scholar
  278. McComb W.D., Chan K.T.J. (1979): Drag Reduction in Fibre Suspensions: Transitional Behavior due to Fibre Degradation. Nature 280, 45–46.ADSGoogle Scholar
  279. McComb W.D., Chan K.T.J. (1981): Drag Reduction in Fibre Suspension. Nature 292, 520–522.ADSGoogle Scholar
  280. McComb W.D., Rabie L.H. (1979): Development of Local Turbulent Drag Reduction Due to Nonuniform Polymer Concentration. Phys. Fluids 22, 183–185.ADSGoogle Scholar
  281. McCormick M.E., Bhattacharyya R. (1973): Drag Reduction of a Submersible Hull by Electrolysis. Nav. Eng. J. 85, 11–16.Google Scholar
  282. McCroskey W.J. (1977): Some Current Research in Unsteady Fluid Dynamics. J. Fluids Eng. 99, 8–39.Google Scholar
  283. McCroskey W.J. (1982): Unsteady Airfoils. Ann. Rev. Fluid Mech. 14, 285–311.ADSGoogle Scholar
  284. Mclnville R.M., Hassan H.A., Goodman W.L. (1985): Mixing Layer Control for Tangential Slot Injection in Turbulent Flows. AIAA Paper No. 85-0541, New York.Google Scholar
  285. McLachlan B.G. (1989): Study of a Circulation Control Airfoil with Leading/Trailing-Edge Blowing. J. Aircraft 26, 817–821.Google Scholar
  286. McMichael J.M., Klebanoff P.S., Meese N.E. (1980): Experimental Investigation of Drag on a Compliant Surface. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 410–438.Google Scholar
  287. McMurray J.T., Metcalfe R.W., Riley J.J. (1983): Direct Numerical Simulations of Active Stabilization of Boundary Layer Flows. Proc. Eighth Biennial Symp. on Turbulence, ed. J.L. Zakin and G.K. Patterson, Paper No. 36, (University of Missouri, Rolla, MO).Google Scholar
  288. Mehta R.D. (1985a): Aerodynamics of Sports Balls. Ann. Rev. Fluid Mech. 17, 151–189.ADSGoogle Scholar
  289. Mehta R.D. (1985b): Effect of a Longitudinal Vortex on a Separated Turbulent Boundary Layer. AIAA Paper No. 85-0530, New York.Google Scholar
  290. Mehta R.D. (1988): Vortex/Separated Boundary-Layer Interactions at Transonic Mach Numbers. AIAA J. 26, 15–26.ADSGoogle Scholar
  291. Merkle C.L., Deutsch, S. (1985): Drag Reduction by Microbubbles: Current Research Status. AIAA Paper No. 85-0537, New York.Google Scholar
  292. Merkle C.L., Deutsch S. (1989): Microbubble Drag Reduction. Frontiers inExperimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 291–336.Google Scholar
  293. Miau J.J., Chen M.H., Chow J.H. (1988): Flow Structures of a Vertically Oscillating Plate Immersed in a Flat-Plate Turbulent Boundary Layer. Proc. Eleventh Biennial Symp. on Turbulence, Paper No. A28, (University of Missouri, Rolla, MO).Google Scholar
  294. Migay V.K. (1960a): Diffuser with Transverse Fins (English translation from Russian). Energomashinostroenie, no. 4, 31.Google Scholar
  295. Migay V.K. (1960b): On Improving the Effectiveness of Diffuser Flows with Separation (English translation from Russian). Mekhanika i Mashinostroyeniye, no. 4, 171–173.Google Scholar
  296. Migay V.K. (1961): Increasing the Efficiency of Diffosers by Fitting Transverse Fins (English translation from Russian). Teploenergetika, no. 1, 45–46.Google Scholar
  297. Migay V.K. (1962a): The Efficiency of a Cross-Ribbed Curvilinear Diffuser (English translation from Russian). Energomashinostroenie, no. 1, 45–46.Google Scholar
  298. Migay V.K. (1962b): The Aerodynamic Effectiveness of a Discontinuous Surface (English translation from Russian). Inzhenerno-Fizicheskiy Zhurnal 5, 20–24.Google Scholar
  299. Migay V.K. (1962c): Investigating Finned Diffusers: Effects of Geometry on Effectiveness of Finned Body Diffusers (English translation from Russian). Teploenergetika, no. 10, 55–59.Google Scholar
  300. Miffing R.W. (1981): Tollmien-Schlichting Wave Cancellation. Phys. Fluids 24, 979–981.ADSGoogle Scholar
  301. Modi V.J., Fernando M., Yokomizo T. (1990): Drag Reduction of Bluff Bodies Through Moving Surface Boundary Layer Control. AIAA Paper No. 90-0298, New York.Google Scholar
  302. Modi V.J., Mokhtarian F., Fernando M., Yokomizo T. (1989): Moving Surface Boundary Layer Control as Applied to 2-D Airfoils. AIAA Paper No. 89-0296, New York.Google Scholar
  303. Modi V.J., Sun J.L.C., Akutsu T., Lake P., McMillan K., Swinton P.G., Muffins D. (1980): Moving Surface Boundary Layer Control for Aircraft Operations at High Incidence. AIAA Paper No. 80-1621, New York.Google Scholar
  304. Modi V.J., Sun J.L.C., Akutsu T., Lake P., McMiffian K., Swinton P.G., Muffins D. (1981): Moving Surface Boundary Layer Control for Aircraft Operation at High Incidence. J. Aircraft 18, 963–968.Google Scholar
  305. Moin P., Bewley T. (1994): Feedback Control of Turbulence. Appl. Mech. Rev. 47, S3–S13.CrossRefGoogle Scholar
  306. Mokhtarian F., Modi V.J. (1988): Fluid Dynamics of Airfoils with Moving Surface Boundary Layer Control. J. Aircraft 25, 163–169.Google Scholar
  307. Mokhtarian F., Modi V.J., Yokomizo T. (1988a): Effect of Moving Surfaces on the Airfoil Boundary Layer Control. AIAA Paper No. 88-4337-CP, New York.Google Scholar
  308. Mokhtarian F., Modi V.J., Yokomizo T. (1988b): Rotating Air Scopp as Airfoil Boundary Layer Control. J. Aircraft 25, 973–975.Google Scholar
  309. Moore F.K. (1958): On the Separation of the Unsteady Laminar Boundary Layer. Boundary-Layer Research, ed. H. Görtier, (Springer-Verlag, Berlin), 296–310.Google Scholar
  310. Morduchow M., Grape R.G. (1955): Separation, Stability, and Other Properties of Compressible Laminar Boundary Layer with Pressure Gradient and Heat Transfer. NACA Technical Note No. TN-3296, Washington, D.C.Google Scholar
  311. Morkovin M.V. (1969): Critical Evaluation of Transition from Laminar to Turbulent Shear Layers with Emphasis on Hypersonically Traveling Bodies. Air Force Flight Dynamics Laboratory Report No. AFFDL-TR-68-149, Wright-Patterson AFB, OH.Google Scholar
  312. Morkovin M.V. (1984): Bypass Transition to Turbulence and Research Desiderata. Transition in Turbines Symposium, NASA CP-2386, Washington, D.C.Google Scholar
  313. Morkovin M.V. (1988): Recent Insights into Instability and Transition to Turbulence in Open-Flow Systems. AIAA Paper No. 88-3675, New York.Google Scholar
  314. Muffin T., Greated C.A., Grant I. (1980): Pulsating Flow over a Step. Phys. Fluids 23, 669–674.ADSGoogle Scholar
  315. Nadolink R.H., Haigh W.W. (1995): Bibliography on Skin Friction Reduction with Polymers and other Boundary-Layer Additives. Appl. Mech. Rev. 48, 351–460.Google Scholar
  316. Nagamatsu H.T., Dyer R., Ficarra R.V. (1985): Supercritical Airfoil Drag Reduction by Passive Shock Wave/Boundary Layer Control in the Mach Number Range.75 to.9. AIAA Paper No. 85-0207, New York.Google Scholar
  317. Nagamatsu H.T., Trilling T.W., Bossard J.A. (1987): Passive Drag Reduction on a Complete NACA 0012 Airfoil at Transonic Mach Numbers. AIAA Paper No. 87-1263, New York.Google Scholar
  318. Nagel A.L., Alford W.J., Jr., Dugan J.F. (1975): Future Long-Range Transports— Prospects for Improved Fuel Efficiency. NASA Technical Memorandum No. X-72659, Washington, D.C.Google Scholar
  319. Nakayama W. (1986): Thermal Management of Electronic Equipment. App. Mech. Rev. 39, 1847–1868.CrossRefGoogle Scholar
  320. Narasimha R., Ojha S.K. (1967): Effect of Longitudinal Surface Curvature on Boundary Layers. J. Fluid Mech. 29, 187–199.MATHADSGoogle Scholar
  321. Narasimha R., Sreenivasan K.R. (1973): Relaminarization in Highly Accelerated Turbulent Boundary Layers. J. Fluid Mech. 61, 417–447.ADSGoogle Scholar
  322. Narasimha R., Sreenivasan K.R. (1979): Relaminarization of Fluid Flows. Advances in Applied Mechanics, ed. C.-S. Yih, vol. 19, (Academic Press, New York), 221–309.Google Scholar
  323. Nayfeh A.H., Ragab S.A., Al-Maaitah A. (1986): Effects of Roughness on the Stability of Boundary Layers. AIAA Paper No. 86-1044, New York.Google Scholar
  324. Nelson C.F., Koga D.J., Eaton J.K. (1987): Control of the Unsteady Separated Flow behind an Oscillating Two-Dimensional Flap. AIAA Paper No. 89-1027, New York.Google Scholar
  325. Nelson C.F., Koga D.J., Eaton J.K. (1990): Unsteady, Separated Flow behind an Oscillating, Two-Dimensional Spoiler. AIAA J. 2, 845–852.ADSGoogle Scholar
  326. Neuburger D., Wygnanski I. (1988): The Use of a Vibrating Ribbon to Delay Separation on Two-Dimensional Airfoils: Some Preliminary Observations. Proc. Workshop II on Unsteady Separated Flow, ed. J.M. Walker, Frank J. Seiler Research Laboratory, U.S. Air Force Systems Command Report No. FJSRL-TR-88-0004, Colorado Springs, CO, 333–341.Google Scholar
  327. Nickerson J.D. (1986): A Study of Vortex Generators at Low Reynolds Numbers. AIAA Paper No. 86-0155, New York.Google Scholar
  328. Norman J.R., Fraser F.C. (1937): Giant Fishes, Whales and Dolphins. (Putnam, London, England).Google Scholar
  329. Novak C.J., Cornelius K. C, Roads R.K. (1987): Experimental Investigations of the Circular Wall Jet on a Circulation Control Airfoil. AIAA Paper No. 87-0155, New York.Google Scholar
  330. Ogorodnikov D.A., Grin V.T., Zakharov N.N. (1972): Boundary Layer Control of Hypersonic Air Inlets. NASA Report No. TTF-13927, Washington, D.C.Google Scholar
  331. Oyler T.E., Palmer W.E. (1972): Exploratory Investigation of Pulse Blowing for Boundary Layer Control. Columbus Aircraft Division, North American Rockwell Corp. Report No. NR 72H-12, Columbus, OH. (Also available from U.S. NTIS; Document Number AD-742 085.)Google Scholar
  332. Panton R.L. (1996): Incompressible Flow, second edition, (Wiley-Interscience, New York).Google Scholar
  333. Papell S.S. (1984): Vortex Generating Flow Passage Design for Increased Film-Cooling Effectiveness and Surface Coverage. NASA Technical Memorandum No. TM-83617, Washington, D.C.Google Scholar
  334. Patel V.C., Head M.R. (1968): Reversion of Turbulent to Laminar Flow. J. Fluid Mech. 34, 371–392.ADSGoogle Scholar
  335. Patera A.T. (1986): Spectral Element Simulation of Flow in Grooved Channels: Cooling Chips with Tollmien-Schlichting Waves. Supercomputers and Fluid Dynamics, eds. K. Kuwahara, R. Mendez, and S.A. Orszag, (Springer-Verlag, Berlin), 41–51.Google Scholar
  336. Patera A.T., Mikić B.B. (1986): Exploiting Hydrodynamic Instabilities—Resonant Heat Transfer Enhancement. Int. J. Heat Mass Transfer 29, 1127–1138.Google Scholar
  337. Patterson G.K., Zakin J.L., Rodriguez J.M. (1969): Drag Reduction. Polymer Solutions, Soap Solutions, and Solid Particle Suspensions in Pipe Flow. Indus. & Eng. Chem. 61, 22–30.Google Scholar
  338. Pearcey H.H. (1961): Shock Induced Separation and Its Prevention by Design and Boundary Layer Control. Boundary Layer and Flow Control—Its Principle and Applications, ed. G.V. Lachmann, vol. 2, (Pergamon Press, Oxford, England), 1166–1344.Google Scholar
  339. Pfeifer R., Rosetti S.J. (1971): Experimental Determination of Pressure Drop and Flow Characteristics of Dilute Gas-Solid Suspensions. NASA Contractor Report No. 1894, Washington, D.C.Google Scholar
  340. Pfenninger W. (1946): Untersuchungen über Reibungsverminderung an Tragflügeln, insbesondere mit Hilfe von Grenzschichtabsaugung. Institute of Aerodynamics Report No. 13, ETH, Zürich, Switzerland.Google Scholar
  341. Pfenninger W., Vemuru C.S. (1990): Design of Low Reynolds Number Airfoils. J. Aircraft 27, 204–210.Google Scholar
  342. Phillips O.M. (1979): The Last Chance Energy Book (Johns Hopkins Univ. Press, Baltimore, MD).Google Scholar
  343. Plesniak M.W., Nagib H.M. (1985): Net Drag Reduction in Turbulent Boundary Layers Resulting from Optimized Manipulation. AIAA Paper No. 85-0518, New York.Google Scholar
  344. Povkh I.L., Bolonov N.I., Eidel’man A.Ye. (1979): The Average Velocity Profile and the Frictional Loss in Turbulent Flow of an Aqueous Suspension of Clay. Fluid Mech.—Soviet Research 8. 118–124.Google Scholar
  345. Prandtl L. (1904): Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Proc. Third Int. Math. Congr., (Heidelberg, Germany), 484–491.Google Scholar
  346. Prandtl L. (1925): Magnuseffeckt und Windkraftscbiff. Naturwissenschaften 13, 93–108.ADSGoogle Scholar
  347. Prandtl L. (1935): The Mechanics of Viscous Fluids. Aerodynamic Theory, ed. W.F. Durand, vol. III, (Springer-Verlag, Berlin), 34–208.Google Scholar
  348. Preston J.H. (1958): The Minimurn Reynolds Number for a Turbulent Boundary Layer and the Selection of a Transition Device. J. Fluid Mech. 3, 373–384.MATHADSGoogle Scholar
  349. Pretsch J. (1942): Umschlagbeginn und Absaugung. Jahrb. Dtsch. Luftfahrtforschung 1, 54–71.MathSciNetGoogle Scholar
  350. Purohit S.C. (1987): Effect of Vectored Suction on a Shock-Induced Separation. AIAA J. 25, 759–760.ADSGoogle Scholar
  351. Purshouse M. (1976): On the Damping of Unsteady Flow by Compliant Boundaries. J. Sound & Vibration 49, 423–436.MATHADSGoogle Scholar
  352. Purshouse M. (1977): Interaction of Flow with Compliant Surfaces. Ph.D. Thesis, Cambridge University, Cambridge, United Kingdom.Google Scholar
  353. Radin I. (1974): Solid-Fluid Drag Reduction. Ph.D. Thesis, University of Missouri, Rolla, MO.Google Scholar
  354. Radin I., Zakin J.L., Patterson G.K. (1975): Drag Reduction in Solid-Fluid Systems. AIChE J. 21, 358–371.Google Scholar
  355. Ragab S.A., Nayfeh A.H. (1980): A Comparison of the Second-Order Triple-Deck Theory and Interacting Boundary Layers for Incompressible Flows Past a Hump. AIAA Paper No. 80-0072, New York.Google Scholar
  356. Raghunathan S. (1985): Passive Control of Shock-Boundary Layer Interaction. Prog. Aerospace Sci. 25, 271–296.ADSGoogle Scholar
  357. Rao D.M. (1979): Leading-Edge Vortex Flap Experiments on a 74-Deg. Delta Wing. NASA Contractor Report No. CR-159161, Washington, D.C.Google Scholar
  358. Rao D.M. Kariya T.T. (1988): Boundary-Layer Submerged Vortex Generators for Separation Control—An Exploratory Study. AIAA Paper No. 88-3546-CP, New York.Google Scholar
  359. Ras M., Ackeret J. (1941): Über Verhinderung der Grenzschicht-Turbulenz durch Absaugung. Helv. Phys. Acta 14, 323.Google Scholar
  360. Raspet A. (1952): Boundary-Layer Studies on a Sailplane. Aeronaut. Eng. Rev. 11, 52–60.Google Scholar
  361. Reed H.L., Nayfeh A.H. (1986): Numerical-Perturbation Technique for Stability of Flat-Plate Boundary Layers with Suction. AIAA J. 24, 208–214.MATHADSMathSciNetGoogle Scholar
  362. Reed H.L., Saric W.S. (1987): Stability and Transition of Three-Dimensional Flows. Proc. 10th U.S. Nat. Cong. Applied Meck, ed. J.P. Lamb, (ASME, New York), 457–468.Google Scholar
  363. Reed H.L., Saric W.S. (1989): Stability of Three-Dimensional Boundary Layers. Ann. Rev. Fluid Mech. 21, 235–284.ADSMathSciNetGoogle Scholar
  364. Reischman M.M., Tiederman W.G. (1975): Laser-Doppler Anemometer Measurements in Drag-Reducing Channel Flows. J. Fluid Mech. 70, 369–392.ADSGoogle Scholar
  365. Reisenthel P.H., Nagib H.M., Koga D. J. (1985): Control of Separated Flows Using Forced Unsteadiness. AIAA Paper No. 85-0556, New York.Google Scholar
  366. Reshotko E. (1976): Boundary-Layer Stability and Transition. Ann. Rev. Fluid Mech. 8, 311–349.ADSGoogle Scholar
  367. Reshotko E. (1979): Drag Reduction by Cooling in Hydrogen-Fueled Aircraft. J. Aircraft 16, 584–590.Google Scholar
  368. Reshotko E. (1985): Control of Boundary Layer Transition. AIAA Paper No. 85-0562, New York.Google Scholar
  369. Reshotko E. (1987): Stability and Transition—How Much Do We Know?. Proc. 10th U.S. National Gong, of App. Mech., ed. J.P. Lamb, (ASME, New York), 421–434.Google Scholar
  370. Reynolds G.A., Saric W.S. (1986): Experiments on the Stability of the Flate-Plate Boundary Layer with Suction. AIAA J. 24, 202–207.ADSGoogle Scholar
  371. Reynolds W.C., Carr, L.W. (1985): Review of Unsteady, Driven, Separated Flows. AIAA Paper No. 85-0527, New York.Google Scholar
  372. Reynolds W.C., Eaton J.K., Johnston J.P., Hesselink L., Powell D.J., Roberts L., Kroo E. (1988): Flow Control for Unsteady and Separated Flows and Turbulent Mixing. AFOSR Technical Report No. TR-89-0232, Washington, D.C. (Also available from U.S. NTIS; Document Number AD-A205989.)Google Scholar
  373. Riley J.J., Gad-el-Hak M. (1985): The Dynamics of Turbulent Spots. Frontiers in Fluid Mechanics, eds. S.H. Davis and J.L. Lumley, (Springer-Verlag, Berlin), 123–155.Google Scholar
  374. Riley J.J., Gad-el-Hak M., Metcalfe R.W. (1988): Compliant Coatings. Ann, Rev. Fluid Mech. 20, 393–420.ADSGoogle Scholar
  375. Ringleb E.O. (1961): Separation Control by Trapped Vortices. Boundary Layer and Flow Control, ed. G.V. Lachmann, vol. 1, (Pergamon Press, Oxford, England), 265–294.Google Scholar
  376. Robinson S.K. (1991): Coherent Motions in the Turbulent Boundary Layer. Annu. Rev. Fluid Mech. 23, 601–639.ADSGoogle Scholar
  377. Roos F.W., Kegelman J.T. (1986): Control of Coherent Structures in Reattaching Laminar and Turbulent Shear Layers. AIAA J. 24, 1956–1963.ADSGoogle Scholar
  378. Rott N. (1956): Unsteady Viscous Flow in the Vicinity of a Stagnation Point. Q. Appl Math. 13, 444–451.MathSciNetMATHGoogle Scholar
  379. Rotta J.C. (1970): Control of Turbulent Boundary Layers by Uniform Injection and Suction of Fluid. Seventh Congress of the International Council of the Aeronautical Sciences, ICAS Paper No. 70-10, Rome, Italy.Google Scholar
  380. Runyan L.J., Steers L. L. (1980): Boundary Layer Stability Analysis of a Natural Laminar Flow Glove on the F-111 TACT Airplane. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 17–32Google Scholar
  381. Ryskin G. (1987): Turbulent Drag Reduction by Polymers: A Quantitative Theory. Phys. Rev. Letters 59, 2059–2062.ADSGoogle Scholar
  382. Sabadell L.A. (1988): Effects of a Drag Reducing Additive on Turbulent Boundary Layer Structure. M.Sc. Thesis, Princeton University, Princeton, NJ.Google Scholar
  383. Sajben M., Chen C.P., Kroutil J.C. (1976): A New, Passive Boundary Layer Control Device. AIAA Paper No. 76-700, New York.Google Scholar
  384. Saric W.S., Reed H.L. (1986): Effect of Suction and Weak Mass Injection on Boundary-Layer Transition. AIAA J. 24, 383–389.ADSGoogle Scholar
  385. Saripalli K.R., Simpson R.L. (1980): Investigation of Blown Boundary Layers with an Improved Wall Jet System. NASA Contractor Report No. CR-3340, Washington, D.C.Google Scholar
  386. Sasaki K., Kiya M. (1985): Effect of Free-Stream Turbulence on Turbulent Properties of a Separation-Reattachment Flow. Bulletin of JSME 28, 610–616.ADSGoogle Scholar
  387. Savins J.G. (1967): A Stress-Controlled Drag-Reduction Phenomenon. Rheologica Acta 6, 323–330.Google Scholar
  388. Savu G., Trifu O. (1984): Porous Airfoils in Transonic Flow. AIAA J. 22, 989–991.ADSGoogle Scholar
  389. Schilz W. (1965/66): Experimentelle Untersuchungen zur Akustischen Beeinflussung der Strömungsgrenzschicht in Luft. Acustica 16, 208–223.Google Scholar
  390. Schlichting H. (1959): Einige neuere Ergebnisse über Grenzschichtbeein flussung. Proc. First Int. Congr. Aero. Sci., eds. Th. von Karman et al., Adv. in Aero. Sci., vol. 2, (Pergamon Press, London, England), 563–586.Google Scholar
  391. Schlichting H. (1979): Boundary-Layer Theory, seventh edition, (McGraw-Hill, New York).MATHGoogle Scholar
  392. Schlichting H., Pechau W. (1959): Auftriebserhöhung von Tragflügeln durch kontinuierlich verteilte Absaugtmg. ZFW 7, 113–119.MATHGoogle Scholar
  393. Schlichting H., Ulrich A. (1940): Zur Berechnung des Umschlages laminar-turbulent. Jahrb. Dtsch. Luftfahrtforschung 1, 8–35.Google Scholar
  394. Schofield W.H. (1985): Turbulent Boundary Layer Development in an Adverse Pressure Gradient After an Interaction with a Normal Shock Wave. J. Fluid Mech. 154, 43–62.ADSGoogle Scholar
  395. Schubauer G.B., Skramstad H.K. (1947): Laminar Boundary-Layer Oscillations and Stability of Laminar Flow. J. Aero. Sci. 14, 69–78.Google Scholar
  396. Schubauer G.B., Spangenberg W.G. (1960): Forced Mixing in Boundary Layers. J. Fluid Mech. 8, 10–32.MATHADSGoogle Scholar
  397. Scott M.R., Watts H.A. (1977): Computational Solution of Linear Two-Point Boundary Value Problems via Orthonormalization. J. Numerical Analysis 14, 40–70.MATHMathSciNetADSGoogle Scholar
  398. Sears W.R. (1956): Some Recent Developments in Airfoil Theory. J. Aeronaut. Sci. 23, 490–499.MATHMathSciNetGoogle Scholar
  399. Sears W.R., Telionis D.P. (1972): Unsteady Boundary-Layer Separation. Recent Research on Unsteady Boundary Layers, ed. E.A. Eichelbrenner, vol. 1,(Presses de l’Université Laval, Quebec, Canada), 404–442.Google Scholar
  400. Sears W.R., Telionis D.P. (1975): Boundary-Layer Separation in Unsteady Flow. J. Appl Math. 28, 215–235.ADSMATHGoogle Scholar
  401. Selby G.V., Miandoab, F.H. (1990): Effect of Surface Grooves on Base Pressure for a Blunt Trailing-Edge Airfoil. AIAA J. 28, 1133–1135.ADSGoogle Scholar
  402. Sen M. (1989): The Influence of Developments in Dynamical Systems Theory on Experimental Fluid Mechanics. Frontiers in Experimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 1–24.Google Scholar
  403. Shiloh K., Shivaprasad B.G., Simpson R.L. (1981): The Structure of a Separating Turbulent Boundary Layer. Part 3: Transverse Velocity Measurements. J. Fluid Mech. 113, 75–90.ADSGoogle Scholar
  404. Sigal A. (1971): An Experimental Investigation of the Turbulent Boundary Layer over a Wavy Wall. Ph.D. Thesis, California Institute of Technology, Pasadena, CA.Google Scholar
  405. Sigurdson L.W., Roshko A. (1985): Controlled Unsteady Excitation of a Reattaching Flow. AIAA Paper No. 85-0552, New York.Google Scholar
  406. Smith A.M.O. (1957): Transition, Pressure Gradient, and Stability Theory. Actes IX Congrès International de Mécanique Appliquée, vol. 4, (Université de Bruxelles, Belgique), 234–244.Google Scholar
  407. Smith A.M.O. (1977): Stratford’s Turbulent Separation Criterion for Axially-Symmetric Flows. J. Applied Math. & tPhysics 28, 929–939.MATHADSGoogle Scholar
  408. Smith A.M.O., Gamberoni N. (1956): Transition, Pressure Gradient and Stability Theory. Douglas Aircraft Company Report No. ES-26388, El Segundo, CA.Google Scholar
  409. Smith A.M.O., Kaups K. (1968): Aerodynamics of Surface Roughness and Imperfections. Society of Automotive Engineers Paper No. SAE-680198, New York.Google Scholar
  410. Smith A.M.O., Stokes T.R., Jr., Lee R.S. (1981): Optimum Tail Shapes for Bodies of Revolution. J. Hydronautics 15, 67–73.Google Scholar
  411. Smits A.J., Wood, D.H. (1985): The Response of Turbulent Boundary Layers to Sudden Perturbations. Ann. Rev. Fluid Mech. 17, 321–358.ADSGoogle Scholar
  412. So R.M.C., Mellor G.L. (1973): Experiment on Convex Curvature Effects in Turbulent Boundary Layers. J. Fluid Mech. 60, 43–62.ADSGoogle Scholar
  413. Soderman P.T. (1972): Aerodynamic Effects of Leading Edge Separation on a Two-Dimensional Airfoil. NASA Technical Memorandum No. TMX-2643, Washington, D.C.Google Scholar
  414. Soo S.L., Trezek G.J. (1966): Turbulent Pipe Flow of Magnesia Particles in Air. I&EC Fundamentals 5, 388–392.Google Scholar
  415. Spaid F.W. (1972): Cooled Supersonic Turbulent Boundary Layer Separated by a Forward Facing Step. AIAA J. 19, 1117–1119.ADSGoogle Scholar
  416. Squire H.B. (1933): On the Stability for Three-Dimensional Disturbances of Viscous Fluid Flow Between Parallel Walls. Proc. R. Soc. Lond. A 142, 621–628.ADSGoogle Scholar
  417. Stanewsky E., KroGhiann P. (1985): Transonic Drag Rise and Drag Reduction by Active/Passive Boundary Layer Control. Aircraft Drag Prediction and Reduction, AGARD Report No. R-723, Rhode-Saint-Génèse, Belgium, 11.1–11.41.Google Scholar
  418. Staniforth R. (1958): Some Tests on Cascades of Compressor Blades Fitted with Vortex Generators. National Gas Turbine Establishment Memorandum No. NGTE-M-314, Farnborough, England. (Also Aeronautical Research. Council, CP-487, London, England.)Google Scholar
  419. Steinheil E., Scherber W., Seidl M., Rieger H. (1977): Investigations on the Interaction of Gases and Well-Defined Solid Surfaces with Respect to Possibilities for Reduction of Aerodynamic Friction and Aerothermal Heating. Rarefied Gas Dynamics, ed. J.L. Potter, AIAA Progress in Aeronautics & Astronautics, vol. 51, (AIAA, New York), 589–602.Google Scholar
  420. Stratford B.S. (1959a): The Prediction of Separation of the Turbulent Boundary Layer. J. Fluid Mech. 5, 1–16.MATHADSMathSciNetGoogle Scholar
  421. Stratford B.S. (1959b): An Experimental Flow with Zero Skin Friction Throughout its Region of Pressure Rise. J. Fluid Mech. 5, 17–35.MATHADSMathSciNetGoogle Scholar
  422. Strazisar A.J., Reshotko E., Prahl J.M. (1977): Experimental Study of the Stability of Heated Laminar Boundary Layers in Water. J. Fluid Mech. 83, 225–247.ADSGoogle Scholar
  423. Stuart J.T. (1963): Hydrodynamic Stability. Laminar Boundary Layer Theory, ed. L. Rosenhead, (Clarendon Press, Oxford), 492–579.Google Scholar
  424. Stull F.D., Velkoff H.R. (1975): Flow Regimes in Two-Dimensional Ribbed Diffusera. J. Fluids Eng. 97, 87–96.Google Scholar
  425. Swanson W.M. (1961): The Magnus Effect: A Summary of Investigations to Date. J. Basic Eng. 83, 461–470.Google Scholar
  426. Swearingen J.D., Blackwelder R.F. (1984): Instantaneous Streamwise Velocity Gradients in the Wall Region. Bull. Am. Phys. Soc. 29, 1528.Google Scholar
  427. Tanil. I. (1969): Boundary-Layer Transition. Ann. Rev. Fluid Mech. 1, 169–196.ADSGoogle Scholar
  428. Tavella D.A., Lee C.S., Wood N.J. (1986a): Influence of Wing Tip Configuration on Lateral Blowing Efficiency. AIAA Paper No. 86-0475, New York.Google Scholar
  429. Tavella D.A., Wood N.J., Lee C.S., Roberts L. (1986b): Two Blowing Concepts for Roll and Lateral Control of Aircraft. Department of Aeronautics and Astronautics Report No. TR-75, Stanford University, Stanford, CA.Google Scholar
  430. Tavella D.A., Wood N.J., Lee C.S., Roberts L. (1988): Lift Modulation with Lateral Wing-Tip Blowing. J. Aircraft 25, 311–316.Google Scholar
  431. Taylor G.I. (1923): Stability of a Viscous Liquid Contained between Two Rotating Cylinders. Phil. Trans. R. Soc. London A 223, 289–343.ADSGoogle Scholar
  432. Taylor H.D. (1948a): Application of Vortex Generator Mixing Principles to Diffasers. Research Department Concluding Report No. R-15064-5, United Aircraft Corporation, East Hartford, CN.Google Scholar
  433. Taylor H.D. (1948b): Design Criteria for and Applications of the Vortex Generator Mixing Principle,” Research Department Report No. M-15 038-1, United Aircraft Corporation, East Hartford, CN.Google Scholar
  434. Telionis D.P., Werle M.J. (1973): Boundary-Layer Separation from Downstream Moving Boundaries. J. Appl. Mech. 40, 369–374.MATHGoogle Scholar
  435. Tennant J.S. (1973): A Subsonic Diffuser with Moving Walls for Boundary Layer Control AIAA J. 11, 240–242.ADSGoogle Scholar
  436. Tennant J.S., Johnson W.S., Keanton D.D., Krothapalli A. (1975): The Application of Moving Wall Boundary Layer Control to Submarine Control Surfaces. University of Tennesse, Report No. MAE-75-01210-1, Knoxville, TN. (Also available from U.S. NTIS; Document Number AD-AO23536.)Google Scholar
  437. Thomas A.S.W. (1983): The Control of Boundary-Layer Transition Using a Wave Superposition Principle. J. Fluid Mech. 137, 233–250.ADSGoogle Scholar
  438. Tichy J., Warnaka G.E., Poole L.A. (1984): A Study of Active Control of Noise in Ducts. J. Vibration, Acoustics, Stress & Reliability in Design 106, 399–404.ADSGoogle Scholar
  439. Tiederman W.G., Luchik T.S., Bogard D.G, (1985): Wall-Layer Structure and Drag Reduction. J. Fluid Mech. 156, 419–437.ADSGoogle Scholar
  440. Tobak M., Peake D.J. (1982): Topology of Three-Dimensional Separated Flows. Ann. Rev. Fluid Mech. 14, 61–85.ADSMathSciNetGoogle Scholar
  441. Toms B.A. (1948): Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers. Proc. 1st Int. Congr. Rheol., vol. 2, (North-Holland, Amsterdam), 135–141.Google Scholar
  442. Truckenbrodt E. (1956): Ein einfaches Näherungsverfahren zum Berechnen der laminaren Reibungsschicht mit Absaugung. Forschg. Ing.-Wes. 22, 147–157.MATHGoogle Scholar
  443. Ulrich A. (1944): Theoretische Untersuchungen über die Widerstandsersparnis durch Laminarhaltung mit Absaugung. Schriften Dtsch. Akad. Luftfahrtforschung B 8, 53.Google Scholar
  444. Vakili A.D. (1990): Review of Vortical Flow Utilization. AIAA Paper No. 90-1429, New York.Google Scholar
  445. Vakili A.D., Wu J.M., Bhat M.K. (1988): High Angle of Attack Aerodynamics of Excitation of the Locked Leeside Vortex. Society of Automotive Engineers Paper No. SAE-88-1424, New York.Google Scholar
  446. Van Ingen J.L., Boermans L.M.M. (1986): Aerodynamics at Low Reynolds Numbers: A Review of Theoretical and Experimental Research at Delft University of Technology. Proc. Int. Conf. on Aerodynamics at Low Reynolds Numbers, vol. I, (Royal Aeronautical Society, London, England), 1.1–1.40.Google Scholar
  447. Van Laere L., Sas P. (1988): Principles and Applications of Active Noise Cancellation. Proc. Noise Control Design: Methods and Practice, ed. J.S. Bolton, (Noise Control Foundation, Poughkeepsie, NY), 279–284.Google Scholar
  448. Verollet E., Fulachier L., Dumas R., Favre A. (1972): Turbulent Boundary Layer with Suction and Heating to the Wall. Heat and Mass Transfer in Boundary Layers, eds. N. Afgan, Z. Zaric and P. Anastasijevec, vol. 1, (Pergamon Presss, Oxford), 157–168.Google Scholar
  449. Vidal R.J. (1959): Research on Rotating Stall in Axial-Flow Compressors: Part III—Experiments on Laminar Separation from a Moving Wall. Wright Air Development Center Technical Report No. 59-75, Wright-Patterson Air Force Base, OH.Google Scholar
  450. Viets H. (1980): Coherent Structures in Time Dependent Shear Flows. Turbulent Boundary Layers, AGARD/NATO CPP-271, Paper No. 5, Nevilly Sur Seine, France.Google Scholar
  451. Viets H., Ball M., Bougine D. (1981a): Performance of Forced Unsteady Diffusers. AIAA Paper No. 81-0154, New York.Google Scholar
  452. Viets H., Palmer G.M., Bethke R.J. (1984): Potential Applications of Forced Unsteady Flows. Unsteady Separated Flows, eds. M.S. Francis and M.W. Luttges, (University of Colorado, Boulder, CO), 21–27.Google Scholar
  453. Viets H., Piatt M., Ball M. (1981c): Unsteady Wing Boundary Layer Energization. AIAA Paper No. 79-1631, New York.Google Scholar
  454. Viets H., Piatt M., Ball M. (1981b): Forced Vortex Near a Wall. AIAA Paper No. 81-0256, New York.Google Scholar
  455. Viets H., Piatt M., Ball M. (1981c): Boundary Layer Control by Unsteady Vortex Generation. J. Wind Eng. & Industrial Aerodynamics 7, 135–144.Google Scholar
  456. Vijgen P.M.H.W., van Dam C.P., Hohnes B.J., Howard F.G. (1989): Wind-Tunnel Investigations of Wings with Serrated Sharp Trailing Edges. Low Reynolds Number Aerodynamics, ed. T.J. Mueller, Lecture Notes in Engineering, vol. 54, (Springer-Verlag, Berlin), 295–313.Google Scholar
  457. Virk P.S. (1975): Drag Reduction Fundamentals. AIChE J. 21, 625–656.Google Scholar
  458. Virk P.S., Merrill E.W., Mickley H.S., Smith K.A., Mollo-Christensen E.L. (1967). The Toms Phenomenon: Turbulent Pipe Flow of Dilute Polymer Solutions. J. Fluid Mech. 30, 305–328.ADSGoogle Scholar
  459. Viswanath P.R. (1988): Shockwave-Turbulent Boundary Layer Interaction and Its Control: A Survey of Recent Developments. Sādhanā 12, 45–104.Google Scholar
  460. Viswanath P.R. (1995): Flow Management Techniques for Base and Afterbody Drag Reduction. Prog. Aero. Sci. 32, 79–129.Google Scholar
  461. Von Winkle W.A. (1961): An Evaluation of a Boundary Layer Stabilization Coating. Naval Underwater Systems Center Technical Memorandum No. 922-111-61, New London, CT.Google Scholar
  462. Wagner R.D., Bartlett D.W., Maddalond. V. (1988): Laminar Flow Control is Maturing. Aerospace America 26, January, 20–24.Google Scholar
  463. Wagner R.D., Fischer M.C. (1984): Fresh Attack on Laminar Flow. Aerospace America 22, March, 72–76.Google Scholar
  464. Wagner, R.D. Maddalon D.V., Fischer M.C. (1984): Technology Development for Laminar Boundary Control on Subsonic Transport Aircraft. AGARD CP-365, Paper No. 16, Rhode-Saint-Génèse, Belgium.Google Scholar
  465. Wallis R.A., Stuart C.M. (1958): On the Control of Shock Induced Boundary Layer Separation with Discrete Jets. Aeronautical Research Council Current Paper No. 494, London, England.Google Scholar
  466. Walsh M. J. (1980): Drag Characteristics of V-Groove and Transverse Curvature Riblets. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 168–184.Google Scholar
  467. Walsh M.J. (1982): Turbulent Boundary Layer Drag Reduction Using Riblets. AIAA Paper No. 82-0169, New York.Google Scholar
  468. Walsh M.J. (1983): Riblets as a Viscous Drag Reduction Technique. AIAA J. 21, 485–486.ADSGoogle Scholar
  469. Walsh M. J. (1990): Riblets. Viscous Drag Reduction in Boundary Layers, eds. D.M. Bushnell and J.N. Hefner, Progress in Astronautics & Aeronautics, vol. 123, (AIAA, Washington, D.C.), 203–261.Google Scholar
  470. Walsh M.J., Lindemann A.M. (1984): Optimization and Application of Riblets for Turbulent Drag Reduction. AIAA Paper No. 84-0347, New York.Google Scholar
  471. Walsh M.J., Weinstein M. (1978): Drag and Heat Transfer on surfaces with Small Longitudinal Fins. AIAA Paper No. 78-1161, New York.Google Scholar
  472. Warnaka G.E. (1982): Active Attenuation of Noise: The State of the Art. Noise Control Eng. 18, 100–110.ADSGoogle Scholar
  473. Warner J.V., Waters D.E., Bernhard R.J. (1988): Adaptive Active Noise Control in Three Dimensional Enclosures. Proc. Noise Control Design: Methods and Practice, ed. J.S. Bolton, (Noise Control Foundation, Poughkeepsie, NY), 285–290.Google Scholar
  474. Wazzan A.R., Okamura T.T., Smith A.M.O. (1968): Stability of Water Flow over Heated and Cooled Flat Plates. J. Heat Transfer 90, 109–114.Google Scholar
  475. Wazzan A.R., Okamura T.T., Smith A.M.O. (1970): The Stability and Transition of Heated and Cooled Incompressible Boundary Layers. Proc. 4th Int. Heat Transfer Conf., eds. U. Grigull and E. Hahne, vol. 2, FC 1.4, (Elsevier, New York).Google Scholar
  476. Weiberg J.A., Giulianettij D., Gambucci B., Innis R.C. (1973): Takeoff and Landing Performance and Noise Characteristics of a Deflected STOL Airplane with Interconnected Propellers and Rotating Cylinder Flaps. NASA Technical Memorandum No. TM-X-62,320, Washington, D.C.Google Scholar
  477. Weis-Fogh T. (1973): Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production. J. Exp. Biol. 59, 169–230.Google Scholar
  478. Wells C.S. (editor) (1969): Viscous Drag Reduction (Plenum Press, New York).Google Scholar
  479. Wells C.S., Jr., Spangler J.G. (1967): Injection of a Drag-Reducing Fluid into Turbulent Pipe Flow of a Newtonian Fluid. Phys. Fluids 10. 1890–1894.ADSGoogle Scholar
  480. Werle M.J., Paterson R.W., Presz W.M., Jr. (1987): Trailing-Edge Separation/Stall Alleviation. AIAA J. 25, 624–626.ADSGoogle Scholar
  481. Wheeler G.O. (1984): Means for Maintaining Attached Flow of a Flow Medium. U.S. Patent No. 4,455,045.Google Scholar
  482. Whitcomb R.T. (1956): A Study of the Zero-Lift Drag-Rise Characteristics of Wing-Body Combinations Near the Speed of Sound. NACA Report No. 1273, Washington, D.C.Google Scholar
  483. White A., Hemmings J.A.G. (1976): Drag Reduction by Additives: Review and Bibliography (BHRA Fluid Engineering, Cranfield, United Kingdom).Google Scholar
  484. Whites R.C., Sudderth R.W., Wheldon W.G. (1966): Laminar Flow Control on the X-21. Astro. & Aero. 4, 38–43.Google Scholar
  485. Wilkinson S.P. (1988): Direct Drag Measurements on Thin-Element Riblets with Suction and Blowing. AIAA Paper No. 88-3670-CP, New York.Google Scholar
  486. Wilkinson S.P. (1990): Interactive Wall Turbulence Control. Viscous Drag Reduction in Boundary Layers, eds. D.M. Bushnell and J.N. Hefner, Progress in Astronautics & Aeronautics, vol. 123, (AIAA, Washington, D.C.) 479–509.Google Scholar
  487. Wilkinson S.P., Anders J.B., Lazos B.S., Bushnell D.M. (1988): Turbulent Drag Reduction Research at NASA Langley: Progress and Plans. Int. J. Heat and Fluid Flow 9, 266–277.Google Scholar
  488. Wilkinson S.P., Lazos B.S. (1987): Direct Drag and Hot-Wire Measurements on Thin-Element Riblet Arrays. Turbulence Management and Relaminarization, eds. H.W. Liepmann and R. Narasimha, (Springer-Verlag, Berlin), 121–131.Google Scholar
  489. Williams D.R., Amato C.W. (1989): Unsteady Pulsing of Cylinder Wakes. Frontiers in Experimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 337–364.Google Scholar
  490. Williams J.C., III, Johnson W.D. (1974a): Semisimilar Solutions to Unsteady Boundary-Layer Flows Including Separation. AIAA J. 12, 1388–1393.MATHADSGoogle Scholar
  491. Williams J.C., III, Johnson W.D. (1974b): Note on Unsteady Boundary-Layer Separation. AIAA J. 12, 1427–1429.MATHCrossRefADSGoogle Scholar
  492. Williams T. I. (1987): The History of Invention (Facts on File Publications, New York).Google Scholar
  493. Willis G.J.K. (1986): Hydrodynamic Stability of Boundary Layers over Compliant Surfaces. Ph.D. Thesis, University of Exeter, United Kingdom.Google Scholar
  494. Wimpenny J.C. (1970): Vortex Generators. U.S. Patent No. 3,525486.Google Scholar
  495. Wood C. J. (1961): A Study of Hypersonic Separated Flow. Ph.D. Thesis, University of London, EnglandGoogle Scholar
  496. Wood N.J., Nielsen J. N. (1985): Circulation Control Airfoils—Past, Present, Future. AIAA Paper No. 85-0204, New York.Google Scholar
  497. Wood N.J., Roberts L. (1986): Experimental Results of the Control of a Vortical Flow by Tangential Blowing. Stanford University Report No. JIAA TR-71, Stanford, CA.Google Scholar
  498. Wood N.J., Roberts L. (1988): Control of Vortical Lift on Delta Wings by Tangential Leading-Edge Blowing. J. Aircraft 25, 236–243.Google Scholar
  499. Wood N.J., Roberts L., Celik Z. (1990): Control of Asymmetric Vortical Flows over Delta Wings at High Angles of Attack. J. Aircraft 27, 429–435.Google Scholar
  500. Wooldridge C.E., Muzzy R.J. (1966): Boundary-Layer Turbulence Measurements with Mass Addition and Combustion. AIAA J. 4, 2009–2016.ADSGoogle Scholar
  501. Wortmann A. (1987): Alleviation of Fuselage from Drag Using Vortex Flows. Department of Energy Report No. DOE/CE/15277-T1, Washington, D.C.Google Scholar
  502. Wu J., Tulin M.P. (1972): Drag Reduction by Ejecting Additive Solutions into a Pure-Water Boundary Layer. ASME J. Basic Eng. 94, 749–756.Google Scholar
  503. Wu J.M., Vakili A.D., Chen Z.L. (1983): Investigation on the Effects of Discrete Wingtip Jets. AIAA Paper No. 83-0546, New York.Google Scholar
  504. Wu J.M., Vakili A.D., Gilliam F.T. (1984): Aerodynamic Interactions of Wingtip Flow with Discrete Wingtip Jets. AIAA Paper No. 84-2206, New York.Google Scholar
  505. Wuest W. (1961): Survey of Calculation Methods of Laminar Boundary Layers With Suction in Incompressible Flow. Boundary Layer and Flow Control—Its Principle and Applications, ed. G.V. Lachmann, vol. 2, (Pergamon Press, New York), 771–800.Google Scholar
  506. Yajnik K.S., Acharya M. (1978): Non-Equilibrium Effects in a Turbulent Boundary Layer due to the Destruction of Large Eddies. Structure and Mechanisms of Turbulence, ed. H. Fiedler, vol. 1, (Springer-Verlag, Berlin), 249–260.Google Scholar
  507. Yeo K.S., Dowling A.P. (1987): The Stability of Inviscid Flows over Passive Compliant Walls. J. Fluid Mech. 183, 265–292.MATHADSGoogle Scholar
  508. Young A.D. (1953): Boundary Layers. Modem Developments in Fluid Dynamics: High Speed Flow, ed. L. Howarth, vol. 1, (Clarendon Press, Oxford), 375–475.Google Scholar
  509. Zakin J.L., Poreh M., Brosh A., Warshavsky M. (1971): Exploratory Study of Friction Reduction in Slurry Flows. Ghent. Eng. Prog. Symp. Seri., no. 67, vol. 111, (AIChE, New York), 85–89.Google Scholar
  510. Zaman K.B.M.Q., Bar-Sever A., Mangalam S.M. (1987): Effect of Acoustic Excitation on the Flow over a Low-Re Airfoil. J. Fluid Mech. 182, 127–148.ADSGoogle Scholar
  511. Zaman K.B.M.Q., McKinzie D.J. (1989): Control of’ Laminar Separation’ over Airfoils by Acoustic Excitation. AIAA Paper No. 89-0565, New York. (Also NASA Technical Memorandum No. TM-101379, Washington, D.C.)Google Scholar
  512. Zang T.A., Hussaini M.Y., Bushnell D.M. (1984): Numerical Computations of Turbulence Amplification in Shock Wave Interactions. AIAA J. 22, 13–22.MATHADSGoogle Scholar
  513. Zhang F., Sheng C. (1987): A Prediction Method for Optimum Velocity Ratio of Air Jet Vortex Generator. J. Aerospace Power 2, 55–60, 92, 93.ADSGoogle Scholar
  514. Zhuk V.I., Ryzhov O.S. (1980): Formation of Recirculation Zones in the Boundary Layer on a Moving Surface. Fluid Dynamics 15, 637–644.MATHADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Mohamed Gad-el-Hak
    • 1
  1. 1.University of Notre DameNotre DameUSA

Personalised recommendations