Solving a Linear Diophantine Equation with Lower and Upper Bounds on the Variables

  • Karen Aardal
  • Cor Hurkens
  • Arjen K. Lenstra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1412)

Abstract

We develop an algorithm for solving a linear diophantine equation with lower and upper bounds on the variables. The algorithm is based on lattice basis reduction, and first finds short vectors satisfying the diophantine equation. The next step is to branch on linear combi- nations of these vectors, which either yields a vector that satisfies the bound constraints or provides a proof that no such vector exists. The research was motivated by the need for solving constrained linear dio- phantine equations as subproblems when designing integrated circuits for video signal processing. Our algorithm is tested with good result on real-life data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Aardal, A. K. Lenstra, and C. A. J. Hurkens. An algorithm for solving a diophantine equation with upper and lower bounds on the variables. Report UU-CS-97-40, Department of Computer Science, Utrecht University, 1997. ftp://ftp.cs.ruu.nl/pub/RUU/CS/techreps/CS-1997/
  2. 2.
    W. Cook, T. Rutherford, H. E. Scarf, and D. Shallcross. An implementation of the generalized basis reduction algorithm for integer programming. ORSA Journal on Computing, 5:206–212, 1993.MATHMathSciNetGoogle Scholar
  3. 3.
    D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerability. Journal of Cryptology, 10:233–260, 1997.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. Cornuéjols, R. Urbaniak, R. Weismantel, and L. Wolsey. Decomposition of integer programs and of generating sets. In R. Burkard and G. Woeginger, editors, Algorithms — ESA’ 97, LNCS, Vol. 1284, pages 92–103. Springer-Verlag, 1997.Google Scholar
  5. 5.
    M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, and C. P. Schnorr. Improved low-density subset sum algorithms. Computational Complexity, 2:111–128, 1992.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    CPLEX Optimization Inc. Using the CPLEX Callable Library, 1989.Google Scholar
  7. 7.
    B. de Fluiter. A Complexity Catalogue of High-Level Synthesis Problems. Master’s thesis, Department of Mathematics and Computing Science, Eindhoven University of Technology, 1993.Google Scholar
  8. 8.
    G. Havas, B. S. Majewski, and K. R. Matthews. Extended gcd and Hermite normal form algorithms via lattice basis reduction. Working paper, Department of Mathematics, The University of Queensland, Australia, 1996.Google Scholar
  9. 9.
    J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. Journal of the Association for Computing Machinery, 32:229–246, 1985.MATHMathSciNetGoogle Scholar
  10. 10.
    A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261:515–534, 1982.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Mathematics of Operations Research, 8:538–548, 1983.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    LiDIA — A library for computational number theory. TH Darmstadt / Universität des Saarlandes, Fachbereich Informatik, Institut für Theoretische Informatik. http://www.informatik.th-darmstadt.de/pub/TI/LiDIA
  13. 13.
    L. Lovász and H. E. Scarf. The generalized basis reduction algorithm. Mathematics of Operations Research, 17:751–764, 1992.MATHMathSciNetGoogle Scholar
  14. 14.
    M. C. McFarland, A. C. Parker, and R. Camposano. The high-level synthesis of digital systems. Proceedings of the IEEE, Vol. 78, pages 301–318, 1990.CrossRefGoogle Scholar
  15. 15.
    C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Mathematical Programming, 66:181–199, 1994.CrossRefMathSciNetGoogle Scholar
  16. 16.
    C. P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest Cryptosystem by improved lattice reduction. In L. C. Guillou and J.-J. Quisquater, editors, Advances in Cryptology — EUROCRYPT’ 95, LNCS, Vol. 921, pages 1–12. Springer Verlag, 1995.Google Scholar
  17. 17.
    W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. H. M. Korst, J. L. van Meerbergen, and A. van der Werf. Modeling periodicity by PHIDEO steams. Proceedings of the Sixth International Workshop on High-Level Synthesis, pages 256–266. ACM/SIGDA, IEEE/DATC, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Karen Aardal
    • 1
  • Cor Hurkens
    • 2
  • Arjen K. Lenstra
    • 3
  1. 1.Department of Computer ScienceUtrecht UniversityUtrecht
  2. 2.Department of Mathematics and Computing ScienceEindhoven University of TechnologyEindhoven
  3. 3.Emerging TechnologyCitibank

Personalised recommendations