Design of Organic Solids pp 57-95

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 198)

Supramolecular Synthons and Pattern Recognition

  • Nangia Ashwini 
  • Desiraju Gautam R. 
Chapter

Abstract

The aims of crystal engineering are the understanding of intermolecular interactions and their application in the design of crystal structures with specific architectures and properties. In general, all types of crystal structures may be considered but this article is limited to organic molecular solids. Because of the molecular basis of organic chemistry, the obvious question arises as to whether there are simple connections between the structures of molecules and the crystals that they form. Answers to such questions may be found through a better and more comprehensive understanding of the interactions that control crystal packing. These interactions include strong and weak hydrogen bonds. Patterns of interactions, such as would be useful in a predictive sense, can be obtained by manual inspection or more rigorously with the use of crystallographic databases. Such patterns are termed supramolecular synthons and they depict the various ways in which complementary portions of molecules approach one another. The identification of synthons is then a key step in the design and analysis of crystal structures. Such ideas are also important in the understanding of phenomena such as biological recognition and drug-enzyme binding. Pattern identification also leads to the possibility of comparison of crystal structures. The use of the supramolecular synthon concept facilitates such efforts and in this regard it may be mentioned that synthons combine topological characteristics with chemical information, thereby offering a simplification that is optimal to drawing such comparisons.

Keywords

Hydrogen bond Supramolecular synthesis Molecular recognition Structure comparison Structure prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lehn J-M (1994) Perspectives in supramolecular chemistry: from the lock-and-key image to the information paradigm. In: Behr JP (ed) Perspectives in supramolecular chemistry, vol 1. The lock-and-key principle. The state of the art-100 years on. Wiley, Chichester, p307Google Scholar
  2. 2.
    Desiraju GR, Sharma CVK (1995) Crystal engineering and molecular recognition. Twin facets of supramolecular chemistry. In: Desiraju GR (ed) Perspectives in supramolecular chemistry, vol 2. The crystal as a supramolecular entity. Wiley, Chichester, p 31Google Scholar
  3. 3.
    Dunitz JD (1995) Thoughts on crystals as supermolecules. In: Desiraju GR (ed) Perspectives in supramolecular chemistry, vol 2. The crystal as a supramolecular entity. Wiley, Chichester, p 1Google Scholar
  4. 4.
    Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New YorkGoogle Scholar
  5. 5.
    Desiraju GR (1989) Crystal engineering. The design of organic solids. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Desiraju GR (1996) Review of general principles. In: MacNicol DD, Toda F, Bishop R (eds) Comprehensive supramolecular chemistry, vol 6. Solid-state supramolecular chemistry: crystal engineering. Pergamon, Oxford, p 1Google Scholar
  7. 7.
    Corey EJ (1967) Pure Appl Chem 14:19CrossRefGoogle Scholar
  8. 8.
    Corey EJ (1988) Chem Soc Rev 17: 111CrossRefGoogle Scholar
  9. 9.
    Desiraju GR (1995) Angew Chem Int Ed Engl 34:2311CrossRefGoogle Scholar
  10. 10.
    Corey EJ, Cheng X-M (1989) The logic of chemical synthesis. Wiley, New YorkGoogle Scholar
  11. 11.
    Desiraju GR (1998) Connections between molecular and supramolecular structure. Implications for self-assembly. In: Wuest JD (ed) Self-assembly in synthetic chemistry. NATO ARW Series, in pressGoogle Scholar
  12. 12.
    Desiraju GR (1997) Chem Comm 1475Google Scholar
  13. 13.
    Reddy DS, Craig DC, Desiraju GR (1996) J Am Chem Soc 118:4090CrossRefGoogle Scholar
  14. 14.
    Thaimattam R, Reddy DS, Xue F, Mak TCW, Nangia A, Desiraju GR (1998) New J Chem 143Google Scholar
  15. 15.
    Seebach D (1990) Angew Chem Int Ed Engl 29:1320CrossRefGoogle Scholar
  16. 16.
    Fuhrhop J, Penzlin G (1994) Organic synthesis. Concepts, methods, starting materials, 2nd edn. VCH, WeinheimGoogle Scholar
  17. 17.
    Hanessian S, Franco J, Larouche B (1990) Pure Appl Chem 62:1887CrossRefGoogle Scholar
  18. 18.
    Ho T-L (1988) Carbocycle construction in terpene synthesis. VCH, WeinheimGoogle Scholar
  19. 19.
    Nicolaou KC, Sorensen EJ (1995) Classics in total synthesis. VCH, WeinheimGoogle Scholar
  20. 20.
    Prinzbach H, Weber K (1994) Angew Chem Int Ed Engl 33:2239CrossRefGoogle Scholar
  21. 21.
    Osawa E, Yonemitsu O (ed) (1992) Carbocyclic cage compounds. Chemistry and applications. VCH, New YorkGoogle Scholar
  22. 22.
    Woodward RB (1973) Pure Appl Chem 33:145CrossRefGoogle Scholar
  23. 23.
    Eschenmoser A, Winter CE (1977) Science 196:1410CrossRefGoogle Scholar
  24. 24.
    Armstrong RW, Beau J-M, Cheon SH, Christ WJ, Fujioka H, Ham W-H, Hawkins LD, Jin H, Kang SH, Kishi Y, Martinelli MJ, McWhorter WW, Mizuno M, Nakata M, Stutz AE, Talamas FX, Taniguchi M, Tino JA, Ueda K, Uenishi J, White JB, Yonaga M (1989) J Am Chem Soc 111:7530CrossRefGoogle Scholar
  25. 25.
    Trost BM (1991) Science 254:1471CrossRefGoogle Scholar
  26. 26.
    Holton RA, Somoza C, Kim H-B, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim S, Nadizadeh H, Suzuki Y, Tao C, Vu P, Tang S, Zhang P, Murthi KK, Gentile LN, Liu JH (1994) J Am Chem Soc 116:1597CrossRefGoogle Scholar
  27. 27.
    Nicolaou KC, Yang Z, Liu JJ, Ueno H, Natermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ (1994) Nature 367:630CrossRefGoogle Scholar
  28. 28.
    Philp D, Stoddart JF (1996) Angew Chem Int Ed Engl 35:1154CrossRefGoogle Scholar
  29. 29.
    Gavezzotti A, Filippini G (1994) J Phy Chem 98:4831CrossRefGoogle Scholar
  30. 30.
    Gavezzotti A (1994) Acc Chem Res 27:309CrossRefGoogle Scholar
  31. 31.
    Robertson JM (1951) Proc Roy Soc London Ser A 207:101CrossRefGoogle Scholar
  32. 32.
    Desiraju GR, Gavezzotti A (1989) Acta Crystallogr B45:473Google Scholar
  33. 33.
    Ermer O, Eling A (1994) J Chem Soc Perkin Trans 2 925Google Scholar
  34. 34.
    Hanessian S, Simard M, Roelens S (1995) J Am Chem Soc 117:7630CrossRefGoogle Scholar
  35. 35.
    Allen FA, Hoy VJ, Howard JAK, Thalladi VR, Desiraju GR, Wilson CC, McIntyre GJ (1997) JAm Chem Soc 119:3477CrossRefGoogle Scholar
  36. 36.
    Allen FH, Davies JE, Galloy, JJ, Johnson O, Kennard O, Macrae CF, Mitchell EM, Mitchell GF, Smith JM, Watson DG (1991) J Chem Inf Comput Sci 31:187Google Scholar
  37. 37.
    Katz AK, Glusker JP, Nangia A, Desiraju GR (1997) unpublished resultsGoogle Scholar
  38. 38.
    Desiraju GR (1989) J Chem Soc Chem Commun 179Google Scholar
  39. 39.
    Zimmerman SC, Murray TJ (1993) Phil Trans R Soc Lond A 345:49CrossRefGoogle Scholar
  40. 40.
    Burrows AD, Chan C-W, Chowdhry MM, McGrady JE, Mingos DMP (1995) Chem Soc Rev 329Google Scholar
  41. 41.
    Pranata J, Wierschke SG, Jorgensen WL (1991) JAm Chem Soc 113:2810CrossRefGoogle Scholar
  42. 42.
    Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological systems. Springer, Berlin Heidelberg NewYorkGoogle Scholar
  43. 43.
    Lehn J-M (1990) Angew Chem Int Ed Engl 29:1304CrossRefGoogle Scholar
  44. 44.
    Bryce MR (ed) (1997) J Mater Chem 7:1069 (Special issue on molecular assemblies and nanochemistry)Google Scholar
  45. 45.
    Lehn J-M, Mascal M, DeCian A, Fischer J (1990) J Chem Soc Chem Commun 479Google Scholar
  46. 46.
    Steiner T ( 1996) Cryst Rev 6:1CrossRefGoogle Scholar
  47. 47.
    Desiraju GR (1996) Acc Chem Res 29:441CrossRefGoogle Scholar
  48. 48.
    Steiner T (1997) Chem Commun 727Google Scholar
  49. 49.
    Biradha K, Nangia A, Desiraju GR, Carrell CJ, Carrell HL (1997) J Mater Chem 1111Google Scholar
  50. 50.
    MacGillivray LR, Atwood JL (1997) Chem Commun 477Google Scholar
  51. 51.
    Ashton PR, Collins AN, Fyfe MCT, Menzer S, Stoddart JF, Williams DJ (1997) Angew Chem Int Ed Engl 36:735CrossRefGoogle Scholar
  52. 52.
    Sutor DJ (1962) Nature 195:68CrossRefGoogle Scholar
  53. 53.
    Rubin J, Brennan T, Sundaralingam M (1972) Biochemistry 11:3112CrossRefGoogle Scholar
  54. 54.
    Derewenda ZS, Lee L, Derewenda U (1995) J Mol Biol 252:248CrossRefGoogle Scholar
  55. 55.
    Steiner T, Saenger W (1992) J Am Chem Soc 114:10,146Google Scholar
  56. 56.
    Wahl MC, Sundaralingam M (1997) Trends Biochem Sci 22:97CrossRefGoogle Scholar
  57. 57.
    Leonard GA, McAuley-Hecht K, Brown T, Hunter WN (1995) Acta Crystallogr D51:136Google Scholar
  58. 58.
    Zhurkin VB, Raghunathan G, Ulyanov NB, Camerini-Otero RD, Jernigan RL (1994) J Mol Biol 239:181CrossRefGoogle Scholar
  59. 59.
    Starikov EB, Steiner T (1997) Acta Crystallogr D53:345Google Scholar
  60. 60.
    Auffinger P, Louise-May S, Westhof E (1996) Faraday Discuss 103:151CrossRefGoogle Scholar
  61. 61.
    Behr J-P (ed) (1994) Perspectives in supramolecular chemistry, vol 1. The lock-and-key principle. The state of the art 100 years on. Wiley, ChichesterGoogle Scholar
  62. 62.
    Jorgensen WL (1991) Science 254:954CrossRefGoogle Scholar
  63. 63.
    Boyd DB (1995) Computer-aided molecular design. In: Kent A, Williams JG (eds) Encyclopedia of computer science and technology, vol 33. Marcel Dekker, New York, p 41Google Scholar
  64. 64.
    Böhm H-J, Klebe G (1996) Angew Chem Int Ed Engl 35:2588CrossRefGoogle Scholar
  65. 65.
    Klebe G (1994) J Mol Biol 237:212CrossRefGoogle Scholar
  66. 66.
    Hahn M (1995) J Med Chem 38:2080CrossRefGoogle Scholar
  67. 67.
    Nangia A, Biradha K, Desiraju GR (1996) J Chem Soc Perkin Trans 2 943Google Scholar
  68. 68.
    Threlfall TL (1995) Analyst 120:2435CrossRefGoogle Scholar
  69. 69.
    Sarma JARP, Desiraju GR (1998) Polymorphism and pseudopolymorphism in organic crystals. A Cambridge Structural Database study. In: Seddon KR, Zaworotko MJ (eds), Crystal engineering. The design and applications of functional solids. NATO ASI Series, in pressGoogle Scholar
  70. 70.
    McCrone WC (1965) Polymorphism. In: Fox D, Labes MM, Weissberger A (eds) Physics and chemistry of the organic solid state, vol 2. Interscience, New York, p 725Google Scholar
  71. 71.
    Buerger MJ, Bloom MC (1937) ZKristallogr A96:182Google Scholar
  72. 72.
    Davey RJ, Blagden N, Potts GD, Docherty R (1997) J Am Chem Soc 119:1767CrossRefGoogle Scholar
  73. 73.
    Byrn SR (1982) Solid-state chemistry of drugs. Academic Press, New York, p 79Google Scholar
  74. 74.
    DeCamp WH (1996) Regulatory considerations in crystallisation processes for bulk pharmaceutical industry. A reviewer’s perspective. In: Myerson AS, Green DA, Meenan P (eds), Proceedings of 3rd International Workshop on Crystal Growth of Organic Materials. ACS Series, Washington DC, p 66Google Scholar
  75. 75.
    Dunitz JD, Bernstein J (1995) Acc Chem Res 28:193CrossRefGoogle Scholar
  76. 76.
    Etter MC (1990) Acc Chem Res 23:120CrossRefGoogle Scholar
  77. 77.
    Etter MC, MacDonald JC, Bernstein J (1990) Acta Crystallogr B46:256Google Scholar
  78. 78.
    Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555CrossRefGoogle Scholar
  79. 79.
    Coupar PI, Ferguson G, Glidewell C (1996) Acta Crystallogr C52:2524Google Scholar
  80. 80.
    Kubicki M, Kindopp TW, Capparelli MV, Codding PW (1996) Acta Crystallogr B52:487Google Scholar
  81. 81.
    Subramanian K, Lakshmi S, Rajagopalan K, Koellner G, Steiner T (1996) J Mol Struct 384:121CrossRefGoogle Scholar
  82. 82.
    Gavezzotti A (1996) Curr Opin Solid State Mater Sci 1:501CrossRefGoogle Scholar
  83. 83.
    Hulliger J, Rogin P, Quintel A, Rechsteiner P, König O, Wübbenhorst M (1997) Adv Mater 9:662CrossRefGoogle Scholar
  84. 84.
    Corey EJ, Barnes-Seeman D, Lee TW (1997) Tetrahedron Lett 38:1699CrossRefGoogle Scholar
  85. 85.
    Pan F, Wong MS, Gramlich V, Brosshard Günter P (1996) Chem Comm 1557Google Scholar
  86. 86.
    Hoss R, König O, Kramer-Hoss V, Berger U, Rogin P, Hulliger J (1996) Angew Chem Int Ed Engl 35:2204CrossRefGoogle Scholar
  87. 87.
    Navon O, Bernstein J, Khodorkovsky V (1997) Angew Chem Int Ed Engl 36:601CrossRefGoogle Scholar
  88. 88.
    Carlucci L, Ciani G, Gudenberg DWv, Proserpio DM, Sironi A (1997) Chem Commun 631Google Scholar
  89. 89.
    Michaelides A, Skoulika S, Kiritsis V, Raptopoulou C, Terzis A (1997) J Chem Res (S) 204Google Scholar
  90. 90.
    Kräutler B, Müller T, Maynollo J, Gruber K, Kratky C, Ochsenbein P, Schwarzenbach D, Bürgi H-B (1996) Angew Chem Int Ed Engl 35:1204CrossRefGoogle Scholar
  91. 91.
    Rowland RS (1995) Am Cryst Assoc Abstr 23:63Google Scholar
  92. 92.
    Thalladi VR, Nangia A, Desiraju GR (1997) unpublished resultsGoogle Scholar
  93. 93.
    Steiner T, Starikov EB, Amado AM, Teixeira-Dias JJC (1995) J Chem Soc Perkin Trans 2 1321Google Scholar
  94. 94.
    Madhavi NNL, Nangia A, Desiraju GR (1997) unpublished resultsGoogle Scholar
  95. 95.
    Brock CP, Duncan LL (1994) Chem Mater 6:1307CrossRefGoogle Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Nangia Ashwini 
    • 1
  • Desiraju Gautam R. 
    • 1
  1. 1.School of ChemistryUniversity of HyderabadHyderabadIndia

Personalised recommendations