Some Heuristics for Default Knowledge Discovery

  • Tor-Kristian Jenssen
  • Jan Komorowski
  • Aleksander Øhrn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1424)

Abstract

In this paper discovery of default knowledge as proposed by Mollestad [7], [8], [9], [10] is further investigated. Mollestad’s algorithm, as described in [9], is refined and extended in several ways. In particular, new heuristics guiding the search for default decision rules are proposed and evaluated. The results so far have been encouraging when the (modified) framework is compared to other rough set methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brewka, G. NonmonotonicReasoning: Logical Foundations of Commonsense, Cambridge University Press, 1991Google Scholar
  2. 2.
    Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurasamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, AAAI Press / MIT Press, 1996Google Scholar
  3. 3.
    Hanley, J. A. and McNeil, B. J. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve, Radiology, 143, pp. 29–36, 1982Google Scholar
  4. 4.
    Holte, R. C. Very simple classification rules perform well on most commonly used datasets, Machine Learning, 11, pp. 63–90Google Scholar
  5. 5.
    Jenssen, T.-K. Refinements to Mollestad’s Algorithm for Synthesis of Default Rules, MSc Thesis, Norwegian University of Science and Technology, 1998Google Scholar
  6. 6.
    Łukaszewics, W. Non-Monotonic Reasoning-formalization of commonsence reasoning, Ellis Horwood, 1990Google Scholar
  7. 7.
    Mollestad, T. Learning Propositional Default Rules using the Rough Set Approach, In: Aamodt, A. and Komorowski, J. (eds.), Scandinavian Conference on Artificial Intelligence, pp. 208–219, IOS Press, 1995Google Scholar
  8. 8.
    Mollestad, T. and Skowron, A. A Rough Set Framework for Data Mining of Propositional Default Rules, In: Michalewicz, Z. and Ras, Z. R. (eds.), Proc. of the 9th Intl. Symposium on Intelligent Systems, ISMIS’ 96, pp. 448–457, Springer Verlag, 1996Google Scholar
  9. 9.
    Mollestad, T. A Rough Set Approach to Data Mining: Extracting a logic of default rules from data, PhD Thesis, Norwegian University of Science and Technology, 1997Google Scholar
  10. 10.
    Mollestad, T. and Komorowski, J. A Rough Set Framework for Propositional Default Rules Data Mining, To appear in: Pal, S. K. and Skowron, A. (eds.), Fuzzy Sets, Rough Sets and Decision Making Processes, Springer-Verlag Singapore Pte Ltd, 1998Google Scholar
  11. 11.
    Murphy, P. M. UCI Repository of machine Learning and Domain Theories, At: http://www.ics.uci.edu/~mlearn/MLRepository.html
  12. 12.
    Pawlak, Z. Rough Sets, In: Intl. J. of Information and Computer Science, 11(5) pp. 341–356, 1982CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publisher, 1991Google Scholar
  14. 14.
    Pawlak, Z. and Skowron A. A Rough Set Approach to Decision Rules Generation, Technical Report, Warzaw University of Technology, 1993Google Scholar
  15. 15.
    Piatetsky-Shapiro, G. and Frawley, W. J. (eds.) Knowledge Discovery in Databases, AAAI Press/MIT Press, 1991Google Scholar
  16. 16.
    Poole, D. L. A Logical Framework for Default Reasoning, J. of Artificial Intelligence, 36, pp. 27–47, 1988MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Reiter, R. A Logic for Default Reasoning, Computational Intelligence, 13, pp. 81–132, 1980MATHMathSciNetGoogle Scholar
  18. 18.
    The RosettaWWW homepage At: http://www.idi.ntnu.no/aleks/rosetta/
  19. 19.
    Skowron, A. Boolean Reasoning for Decision Rules Generation In: Komoroski, J. and Ras, Z. W. (eds.), 7th Intl. Symposium for Methodologies for Intelligent Systems (ISMIS’ 93), pp. 295–305, Springer Verlag, 1993Google Scholar
  20. 20.
    Skowron, A. Synthesis of Adaptive Decision Systems from Experimental Data, In: Aamodt, A. and Komorowski, J. (eds.), Proc. 5th Scandinavian Conference on Artificial Intelligence, Trondheim, Norway, May 29–31, Frontiers in Artificial Intelligence and Applications, Vol. 28, pp. 220–238, IOS Press, 1995Google Scholar
  21. 21.
    Ziarko, W. P. (ed.) Rough Sets, Fuzzy Sets, and Knowledge Discovery-Proc. of the Intl. Workshop on Rough Sets and Knowledge Discovery (RSKD’ 93), Springer Verlag, 1993Google Scholar
  22. 22.
    Øhrn, A., Komorowski, J., Skowron, A. and Synak, P. The Design and Implementation of a Knowledge Discovery Toolkit Based on Rough Sets-The Rosetta System, To appear in: Skowron, A. and Polkowski, L. (eds.), Rough Sets in Knowledge Discovery, Physica VerlagGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Tor-Kristian Jenssen
    • 1
  • Jan Komorowski
    • 1
  • Aleksander Øhrn
    • 1
  1. 1.Knowledge Systems Group, Dept. of Computer and Information ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations