Thinking in Cycles

  • Mark-Oliver Stehr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1420)

Abstract

A new axiomization of the intuitive concept of partial cyclic orders is proposed and the appropriateness is motivated from pragmatic as well as mathematical perspectives. There is a close relation to Petri net theory since the set of basic circuits of a safe and live synchronization graph naturally gives rise to a cyclic order. As a consequence cyclic orders provide a simple technique for safety-oriented specification where safety (in the sense of net theory) is achieved by relying on the fundamental concept of cyclic causality constraints avoiding the risk of an immediate and directed causality relation. From a foundational point of view cyclic orders provide a basis for a theory of nonsequential cyclic processes and new insights into C.A.Petri’s concurrency theory. By the slogan measurement as control cyclic orders can serve as a tool for the construction of cyclic measurement scales, spatial and temporal knowledge representation and reasoning being only some applications. New results in this article include a characterization of global orientability (implementability) by weak F-density (the existence of a true cut).

Keywords

cyclic orders causality concurrency synchronization graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Commoner et al. Final Report for the Project “Development of the Theoretical Foundations for Description and Analysis of Discrete Information Systems”. Vol. II (Mathematics). Wakefield, Mass.: Mass. Computer Associates, Inc., 1974.Google Scholar
  2. 2.
    Z. Galil and N. Megiddo. Cyclic ordering is NP-complete. TCS, 5:179–182, 1977.CrossRefMathSciNetGoogle Scholar
  3. 3.
    H. J. Genrich. Einfache nicht-sequentielle Prozesse. Dissertation, GMD, 1971.Google Scholar
  4. 4.
    S. Haar. Kausalität, Nebenläufigkeit und Konflikt — Elementare Netzsysteme aus topologisch-relationaler Sicht. Number 9 in Edition Versal. Beltz Verlag, Berlin, 1998. To appear.MATHGoogle Scholar
  5. 5.
    E. V. Huntington. A set of independent postulates for cyclic order. volume 2 of Proc. Nat. Ac. Sc., 1919.Google Scholar
  6. 6.
    O. Kummer. Axiomensysteme für die Theorie der Nebenläufigkeit. Logos, Berlin, 1996.Google Scholar
  7. 7.
    O. Kummer and M.-O. Stehr. Petri’s axioms of concurrency — A selection of recent results. In Proc. 18th Int. Conf. on Appl. and Theory of Petri Nets, LNCS 1248. Springer, 1997.Google Scholar
  8. 8.
    N. Megiddo. Partial and complete cyclic orders. Bulletin of the American Mathematical Society, 82(2):274–276, 1976.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    C. A. Petri. Grundsätzliches zur Beschreibung diskreter Prozesse. In 3. Colloquium über Automatentheorie, pages 121–140. Birkhäuser Verlag, Basel, 1967.Google Scholar
  10. 10.
    C. A. Petri. Concurrency. In Net Theory and Applications — Proc. Adv. Course on General Net Theory of Processes and Systems, LNCS 84, pages 251–260. Springer, 1980.Google Scholar
  11. 11.
    C. A. Petri. Zyklische Ordnungen. Unpublished draft, June, 14th 1991.Google Scholar
  12. 12.
    C. A. Petri. Nets, time and space. TCS, 153(1–2):3–48, 1996.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    C. A. Petri. Personal communication, September, 16th 1997.Google Scholar
  14. 14.
    R. Röhrig. Representation and processing of qualitative orientation knowledge. In KI-97: Advances in Artificial Intelligence, LNAI 1303. Springer, 1997.Google Scholar
  15. 15.
    M. Silva and T. Murata. B-fairness and structural B-fairness in Petri net models of concurrent systems. Journal of Computer and System Sciences, 44, 1992.Google Scholar
  16. 16.
    E. Smith. On the border of causality: Contact and confusion. TCS, 153(1–2), 1996.Google Scholar
  17. 17.
    J. Sparsø and J. Staunstrup. Delay-insensitive multi-ring structures. Integration, the VLSI journal, 15:313–340, 1993.CrossRefGoogle Scholar
  18. 18.
    M.-O. Stehr. Physically Motivated Axiomatic Concurrency Theory — A Posetless Approach. Studienarbeit, Univ. Hamburg, FB Informatik, 1993. Revised version as report [19].Google Scholar
  19. 19.
    M.-O. Stehr. Concurrency Theory of Cyclic and Acyclic Processes. Fachbereichsbericht FBI-HH-B-190/96, Univ. Hamburg, FB Informatik, 1996.Google Scholar
  20. 20.
    M.-O. Stehr. Zyklische Ordnungen — Axiome und einfache Eigenschaften. Diplomarbeit, Univ. Hamburg, FB Informatik, April 1996. Translated and extended version as reports [21].Google Scholar
  21. 21.
    M.-O. Stehr. A Theory of Cyclic Orders, Part I: Generalized Relations and Acyclic Orders, Part II: Total and Partial Cyclic Orders. Fachbereichsberichte FBI-HH-B-206/97 and FBI-HH-B-207/97, Univ. Hamburg, FB Informatik, 1997.Google Scholar
  22. 22.
    M.-O. Stehr. System Specification by Cyclic Causality Contraints. Fachbereichsbericht FBI-HH-B-210/98, Univ. Hamburg, FB Informatik, 1998.Google Scholar
  23. 23.
    E. Szpilrajn. Sur l’extension de l’ordre partial. Fund. Mathematicae, 16:386–389, 1930.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Mark-Oliver Stehr
    • 1
  1. 1.Fachbereich InformatikUniversität HamburgHamburg

Personalised recommendations