A New Public-Key Cryptosystem

  • David Naccache
  • Jacques Stern
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1233)

Abstract

This paper describes a new public-key cryptosystem where the ciphertext is obtained by multiplying the public-keys indexed by the message bits and the cleartext is recovered by factoring the ciphertext raised to a secret power. Encryption requires four multiplications / byte and decryption is roughly equivalent to the generation of an RSA signature.

References

  1. 1.
    R. Anderson, Robustness principles for public-key protocols, LNCS, Advances in Cryptology, Proceedings of Crypto’95, Springer-Verlag, pp. 236–247, 1995.Google Scholar
  2. 2.
    R. Anderson & S. Vaudenay, Minding your p’s and q’s, LNCS, Advances in Cryptology, Proceedings of Asiacrypt’96, Springer-Velrag, pp. 26–35, 1996.CrossRefGoogle Scholar
  3. 3.
    P. Camion, An example of implementation in a Galois field and more on the Naccache-Stern public-key cryptosystem, manuscript, October 27–29, 1995.Google Scholar
  4. 4.
    B. Chor & R. Rivest, A knapsack-type public key cryptosystem based on arithmetic on finite fields, IEEE Transactions on Information Theory, vol. IT 34, 1988, pp. 901–909.CrossRefMathSciNetGoogle Scholar
  5. 5.
    T. Cusick, A comparison of RSA and the Naccache-Stern public-key cryptosystem, manuscript, October 31, 1995.Google Scholar
  6. 6.
    D. Denning (Robling), Cryptography and data security, Addison-Wesley Publishing Company, p. 148, 1983.Google Scholar
  7. 7.
    Y. Desmedt, What happened with knapsack cryptographic schemes, Performance limits in communication-theory and practice, NATO ASI series E: Applied sciences, vol. 142, Kluwer Academic Publishers, pp. 113–134, 1988.Google Scholar
  8. 8.
    W. Diffie & M. Hellman, New directions in cryptography, IEEE Transactions on Information Theory, vol. IT 22 no 6, pp. 644–654, 1976.CrossRefMathSciNetGoogle Scholar
  9. 9.
    P. Kocher, Timing attacks in implementations of Diffie-Hellman, RSA, DSS and other systems, LNCS, Advances in Cryptology, Proceedings of Crypto’96, Springer-Verlag, pp. 104–113, 1996.Google Scholar
  10. 10.
    H. Lenstra, On the Chor-Rivest knapsack cryptosystem, Journal of Cryptology, vol. 3, pp. 149–155, 1991.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    R. Merkle & M. Hellman, Hiding information and signatures in trapdoor knapsacks, IEEE Transactions on Information Theory, vol. IT 24 no 5, pp. 525–530, 1978.CrossRefGoogle Scholar
  12. 12.
    M. Naor, A proposal for a new public-key by Naccache and Stern, presented at the Weizmann Institute Theory of Computation Seminar, November 19, 1995.Google Scholar
  13. 13.
    A. Odlyzko, Cryptanalytic attacks on the multiplicative knapsack cryptosystem and on Shamir’s fast signature scheme, IEEE Transactions on Information Theory, vol. IT 30, pp. 594–601, 1984.CrossRefMathSciNetGoogle Scholar
  14. 14.
    H. Petersen, On the cardinality of bounded subset products, Technical report TR-95-16-E, University of Technology Chemnitz-Zwickau, 1995.Google Scholar
  15. 15.
    S. Pohlig & M. Hellman, An improved algorithm for computing logarithms over GF(q) and its cryptographic significance, IEEE Transactions on Information Theory, vol. 24, pp. 106–110, 1978.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    D. Pointcheval, A new identification scheme based on the perceptrons problem, LNCS, Advances in Cryptology, Proceedings of Eurocrypt’94, Springer-Verlag, pp. 318–328, 1995.Google Scholar
  17. 17.
    R. Rivest, A. Shamir & L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, CACM, vol. 21, no. 2, pp. 120–126, 1978.MATHMathSciNetGoogle Scholar
  18. 18.
    A. Salomaa, Public-key cryptography, EATCS Monographs on theoretical computer science, vol. 23, Springer-Verlag, page 66, 1990.MathSciNetGoogle Scholar
  19. 19.
    A. Shamir, An efficient identification scheme based on permuted kernels, LNCS, Advances in Cryptology, Proceedings of Crypto’89, Springer-Verlag, pp. 606–609.CrossRefGoogle Scholar
  20. 20.
    G. Simmons, Contemporary cryptology: The science of information integrity, IEEE Press, pp. 257–258, 1992.Google Scholar
  21. 21.
    J. Stern, A new identification scheme based on syndrome decoding, LNCS, Advances in Cryptology, Proceedings of Crypto’93, Springer-Verlag, pp. 13–21, 1994.Google Scholar
  22. 22.
    J. Stern, Designing identification schemes with keys of short size, LNCS, Advances in Cryptology, Proceedings of Crypto’94, Springer-Verlag, pp. 164–173, 1994.Google Scholar
  23. 23.
    P. van Oorschot & M. Wiener, On Diffie-Hellman key agreement with short exponents, LNCS, Advances in Cryptology, Proceedings of Eurocrypt’96, Springer-Verlag, pp. 332–343, 1996.Google Scholar
  24. 24.
    M. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Transactions on Information Theory, vol. 36, no. 3, pp. 553–558, 1990.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • David Naccache
    • 1
  • Jacques Stern
    • 2
  1. 1.Gemplus Card InternationalSarcelles CedexFrance
  2. 2.Ecole Normale SupérieureParis Cedex 5France

Personalised recommendations