Advertisement

De-amortization of Algorithms

Preliminary version
  • S. Rao Kosaraju
  • Mihai Pop
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1449)

Abstract

De-amortization aims to convert algorithms with excellent overall speed, f(n) for performing n operations, into algorithms that take no more than O(f(n)/n) steps for each operation. The paper reviews several existing techniques for de-amortization of algorithms.

Keywords

Global Constraint Garbage Collection Accessible Node Random Access Machine Large Pile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ajtai, M. Fredman, and J. Komlós. Hash functions for priority queues. Information and Control, 63:217–225, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    H.G. Baker, jr. List processing in real time on a serial computer. Communications of the ACM, 21(4):280–294, April 1978.zbMATHCrossRefGoogle Scholar
  3. 3.
    J.L. Bentley. Decomposable searching problems. Information Processing Letters, 8:244–251, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A.L. Buchsbaum, R. Sundar, and R.E. Tarjan. Data structural bootstrapping, linear path compression, and catenable heap ordered double ended queues. In Proceedings of the 33rd Symposium on Theory of Computing, pages 40–49, 1992.Google Scholar
  5. 5.
    A.L. Buchsbaum and R. E. Tarjan. Confluently persistent deques via data structural bootstrapping. In Proceedings of the 4th ACM/SIGACT-SIAM Symposium on Discrete Algorithms, pages 155–164, 1993.Google Scholar
  6. 6.
    B. Chazelle and L.J. Guibas. Fractional cascading: I. A data structuring technique. Algorithmica, 1:133–162, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    B. Chazelle and L.J. Guibas. Fractional cascading: II. Applications. Algorithmica, 1:163–191, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    P.F. Dietz and D.D. Sleator. Two algorithms for maintaining order in a list. In Proceedings of the 19th ACM Symposium on Theory of Computing, pages 365–371, 1987.Google Scholar
  9. 9.
    J.R. Driscoll, H.N. Gabow, R. Shrairman, and R.E. Tarjan. Relaxed heaps: An alternative to Fibonacci heaps with applications to parallel computation. Communications of the ACM, 31(11):1343–1454, November 1988.CrossRefMathSciNetGoogle Scholar
  10. 10.
    J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures persistent. Journal of Computer and System Sciences, 38:86–124, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    P.C. Fischer, A.R. Meyer, and A.L. Rosenberg. Real-time simulation of multihead tape units. Journal of the ACM, pages 590–907, 1972.Google Scholar
  12. 12.
    H. Gajewska and R.E. Tarjan. Deques with heap order. Information Processing Letters, pages 197–200, April 1986.Google Scholar
  13. 13.
    S.A. Greibach. Jump pda’s, deterministic context-free languages: Principal afdls and polynomial time recognition. In Proceedings of 5th annual ACM Symposium on Theory of Computing, pages 20–28, April–May 1973.Google Scholar
  14. 14.
    L. Guibas, E. McCreight, M. Plass, and J. Roberts. A new representation for linear lists. In Proceedings of the 9th ACM Symposium of Theory of Computing, pages 49–60, 1977.Google Scholar
  15. 15.
    S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists. Acta Informatica, 17:157–184, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    H. Kaplan and R. E. Tarjan. Persistent lists with catenation via recursive slowdown. In Proceedings of the 27th ACM Symposium on Theory of Computing, pages 93–102, May 1995.Google Scholar
  17. 17.
    H. Kaplan and R. E. Tarjan. Purely functional representations of catenable sorted lists. In Proceedings of the 28th ACM Symposium on Theory of Computing, pages 202–211, May 1996.Google Scholar
  18. 18.
    S.R. Kosaraju. 1-way stack automaton with jumps. Journal of Computer and System Sciences, 9(2):164–176, October 1974.zbMATHMathSciNetGoogle Scholar
  19. 19.
    S.R. Kosaraju. Real-time simulation of concatenable double-ended queues by double-ended queues. In Proceedings of the 11th ACM Symposium on Theory of Computing, pages 346–351, 1979.Google Scholar
  20. 20.
    S.R. Kosaraju. Localized search in sorted lists. In Proceedings of the 13th ACM Symposium on Theory of Computing, pages 62–69, 1981.Google Scholar
  21. 21.
    S.R. Kosaraju. Redistribution of computations for improving the worst-case. In Proceedings of the First Conference on Foundations of Software Technology and Theoretical Computer Science, pages 3–8, December 1981.Google Scholar
  22. 22.
    S.R. Kosaraju. An optimal RAM implementation of catenable min double-ended queues. In Proceedings of the 5th ACM/SIGACT SIAM Symposium on Discrete Algorithms, pages 195–203, 1994.Google Scholar
  23. 23.
    B. Leong and J. Seiferas. New real-time simulations of multihead tape units. In Proceedings of the 9th ACM Symposium on Theory of Computing, pages 239–248, 1977.Google Scholar
  24. 24.
    C. Levcopoulos and M.H. Overmars. A balanced search tree with O(1) worst-case update. Acta Informatica, 26:269–277, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    K. Mehlhorn and S. Näher. Dynamic fractional cascading. Algorithmica, 5:215–241, 199U.Google Scholar
  26. 26.
    C. Okasaki. Amortization, lazy evaluation and purely functional catanable lists. In Proceedings of the 36th Symposium on Foundations of Computer Science, pages 646–654, 1995.Google Scholar
  27. 27.
    M. H. Overmars. A O(1) average time update scheme for balanced search trees. Bull. EATCS, 18:27–29, 1982.MathSciNetGoogle Scholar
  28. 28.
    M. H. Overmars. The Design of Dynamic Data Structures. Lecture Notes in Computer Science. Springer Verlag, 1983.zbMATHGoogle Scholar
  29. 29.
    R. Raman. Eliminating Amortization: On Data Structures with Guaranteed Response Time. PhD thesis, University of Rochester, 1992.Google Scholar
  30. 30.
    D.E. Willard. Maintaining dense sequential files in a dynamic environment. In Proceedings of the 14th ACM Symposium on Theory of Computing, pages 114–121, May 1982.Google Scholar
  31. 31.
    D.E. Willard. Good worst-case algorithms for inserting and deleting records in dense sequential files. In Proceedings of the ACM SIGMOD Conference on Management of Data, pages 251–260, May 1986.Google Scholar
  32. 32.
    D.E. Willard and G.S. Lueker. Adding range restriction capability to dynamic data structures. Journal of the Association for Computing Machircery, 32(3):597–617, July 1985.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • S. Rao Kosaraju
    • 1
  • Mihai Pop
    • 1
  1. 1.Department of Computer ScienceJohns Hopkins UniversityBaltimore

Personalised recommendations