Advertisement

Proof of Toft’s Conjecture: Every Graph Containing No Fully Odd K4 Is 3-Colorable

Extended Abstract
  • Wenan Zang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1449)

Abstract

The graph 3-coloring problem arises in connection with certain scheduling and partition problems. As is well known, this problem is NP-complete and therefore intractable in general unless NP = P. The present paper is devoted to the 3-coloring problem on a large class of graphs, namely, graphs containing no fully odd K 4, where a fully odd K 4 is a subdivision of K 4 such that each of the six edges of the K 4 is subdivided into a path of odd length. In 1974, Toft conjectured that every graph containing no fully odd K 4 can be vertex-colored with three colors. The purpose of this paper is to prove Toft’s conjecture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Appel and W. Haken, Every Planar Map Is Four Colorable, A.M.S. Contemp. Math. 98 (1989).Google Scholar
  2. 2.
    P. Catlin, Hajós Graph-Coloring Conjecture: Variations and Counterexamples, J. Combin. Theory Ser. B 26 (1979), 268–274.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    V. Chvátal, On Certain Polytopes Associated with Graphs, J. Combin. Theory Ser. B 18 (1975), 138–154.zbMATHCrossRefGoogle Scholar
  4. 4.
    G. A. Dirac, A Property of 4-Chromatic Graphs and Some Remarks on Critical Graphs, J. London Math. Soc. 27 (1952), 85–92.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahrsch. Naturforsch. Ges. Zürich 88 (1943), 133–142.MathSciNetGoogle Scholar
  6. 6.
    G. Hajós, Über eine Konstruktion nicht n-färbbarer Graphen, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961), 116–117.Google Scholar
  7. 7.
    T. R. Jensen and F. B. Shepherd, Note on a Conjecture of Toft, Combinatorica 15 (1995), 373–377.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    U. Krusenstjerna-Hafstrøm and B. Toft, Special Subdivisions of K 4 and 4-Chromatic Graphs, Monatsh. Math. 89 (1980), 101–110.CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    N. Robertson, D. Sanders, P. Seymour and R. Thomas, The Four-Colour Theorem, J. Combin. Theory Ser. B 70 (1997), 2–44.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    N. Robertson, P. Seymour and R. Thomas, Hadwiger’s Conjecture for K 6-Free Graphs, Combinatorica 13 (1993), 279–361.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    E. C. Sewell and L. E. Trotter, Stability Critical Graphs and Even Subdivisions of K 4, J. Combin. Theory Ser. B 59 (1993), 74–84.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    C. Thomassen and B. Toft, Non-separating Induced Cycles in Graphs, J. Combin. Theory Ser. B 31 (1981), 199–224.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    B. Toft, “Problem 10”, in: Recent Advances in Graph Theory, Proc. of the Symposium held in Prague, June 1974 (M. Fiedler, ed.), Academia Praha, 1975, pp. 543–544.Google Scholar
  14. 14.
    K. Wagner, Über eine Eigenschaft der ebene Komplexe, Math. Ann. 114 (1937), 570–590.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Wenan Zang
    • 1
  1. 1.Department of MathematicsUniversity of Hong KongHong Kong

Personalised recommendations