Advertisement

On Boolean Lowness and Boolean Highness

  • Steffen Reith
  • Klaus W. Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1449)

Abstract

The concepts of lowness and highness originate from recursion theory and were introduced into the complexity theory by Schöning [Sch85]. Informally, a set is low (high, resp.) for a relativizable class K of languages if it does not add (adds maximal, resp.) power to K when used as an oracle. In this paper we introduce the notions of boolean lowness and boolean highness. Informally, a set is boolean low (boolean high, resp.) for a class K of languages if it does not add (adds maximal, resp.) power to K when combined with K by boolean operations. We prove properties of boolean lowness and boolean highness which show a lot of similarities with the notions of lowness and highness. Using Kadin’s technique of hard strings (see [Kad88, Wag87, CK96, BCO93]) we show that the sets which are boolean low for the classes of the boolean hierarchy are low for the boolean closure of Σ 2 p . Furthermore, we prove a result on boolean lowness which has as a corollary the best known result (see [BCO93]; in fact even a bit better) on the connection of the collapses of the boolean hierarchy and the polynomial-time hierarchy: If BH = NP(k) then PH = Σ 2 p (k − 1) ⊕ NP(k).

Keywords

Computational complexity lowness highness boolean lowness boolean highness boolean hierarchy polynomial-time hierarchy hard/easy advice collapse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BCO93]
    R. Beigel, R. Chang, and M. Ogihara. A relationship between difference hierarchies and relativized polynomial hierarchies. Mathematical Systems Theory, 26:293–310, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [BF96]
    H. Buhrmann and L. Fortnow. Two queries. TR 96-20, University of Chicago, Department of Computer Science, 1996.Google Scholar
  3. [CGH+88]_J.-Y. Cai, T. Gundermann, J. Hartmanis, L. A. Hemachandra, V. Sewelson, K. Wagner, and G. Wechsung. The boolean hierarchy I: Structural properties. SIAM Journal on Computing, 17(6):1232–1252, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [CH86]
    J. Cai and L. Hamachandra. The boolean hierarchy: Hardware over NP. Proceedings of the Structure in Complexity Theory Conference, 223:105–124, 1986.Google Scholar
  5. [Cha97]
    R. Chang. Bounded queries, approximation and the boolean hierarchy. TR CS 97-04, University of Maryland, Department of Computer Science and Electrical Engineering, 1997.Google Scholar
  6. [CK96]
    R. Chang and J. Kadin. The boolean hierarchy and the polynomial hierarchy: A closer connection. SIAM Journal on Computing, 25(2):340, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [Coo74]
    S. B. Cooper. Minimal pairs and high recursively enumerable degree. Journal of Symbolic Logic, 39:655–660.CrossRefMathSciNetGoogle Scholar
  8. [HHH97a]
    L. A. Hemaspaandra, E. Hemaspaandra, and H. hempel. A downward translation in the polynomial hierarchy. In Proc. of the 14th STACS, volume 1200 of LNCS. Springer Verlag, 1997.CrossRefGoogle Scholar
  9. [HHH97b]
    L. A. Hemaspaandra, E. Hemaspaandra, and H. Hempel. Translating equality downwards. TR 657, University of Rochester, Department of Computer Science, 1997.Google Scholar
  10. [HHH98]
    E. Hemaspaandra, L. Hemaspaandra, and H. hempel. What’s up with downward collapse: Using the easy-hard technique to link boolean and polynomial hierarchy collapses. TR 682, University of Rochester, Department of Computer Science, February 1998.Google Scholar
  11. [Kad88]
    J. Kadin. The polynomial time hierarchy collapses if the boolean hierarchy collapses. SIAM Journal on Computing, 17(6):1263–1282, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Köb85]
    J. Köbler. Untersuchungen verschiedener polynomieller Reduktionsklassen von NP. Diploma Thesis, Universität Stuttgart, 1985.Google Scholar
  13. [KSW87]
    J. köbler, U. Schöning, and K. W. Wagner. The difference and truth-table hierarchies for NP. R.A.I.R.O. Theoretical Informatics and Applications, 21(4):419–435, 1987.zbMATHGoogle Scholar
  14. [Sch83]
    U. Schöning. A low and a high hierarchy within NP. Journal of Computer and System Sciences, 27:14–28, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [Sch85]
    U. Schöning. Complexity and Structure, volume 211 of LNCS. Springer-Verlag, 1985.Google Scholar
  16. [Soa74]
    R. I. Soare. Automorphisms of the lattice of recursively enumerable sets. Bulletin of the American Mathematical Society, 80:53–58, 1974.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [Wag87]
    K. W. Wagner. Number-of-query hierachies. TR 158, University of Augsburg, 1987.Google Scholar
  18. [Wag97]
    K. W. Wagner. A note on bounded queries and the difference hierarchy. TR 137, Institut für Informatik, Universität Würzburg, 1997.Google Scholar
  19. [WW85]
    G. Wechsung and K. Wagner. On the boolean closure of NP, manuscript. Extended abstract as: Wechsung, G., On the boolean closure of NP. In Proc. of the Conference of Foundations on Computation Theory, volume 199 of LNCS, pages 485–493. Springer Verlag, 1985.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Steffen Reith
    • 1
  • Klaus W. Wagner
    • 1
  1. 1.Lehrstuhl für Theoretische InformatikUniversität WürzburgWürzburgGermany

Personalised recommendations