Advertisement

A Probabilistic Zero-Test for Expressions Involving Roots of Rational Numbers

  • Johannes Blömer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1461)

Abstract

Given an expression E using +, −, *, /, with operands from Z and from the set of real roots of integers, we describe a probabilistic algorithm that decides whether E = 0. The algorithms has a one-sided error. If E = 0, then the algorithm will give the correct answer. If E ≠ 0, then the error probability can be made arbitrarily small. The algorithm has been implemented and is expected to be practical.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Bach, J. Driscoll, J. O. Shallit, “Factor Refinement”, Journal of Algorithms, Vol. 15, pp. 199–222, 1993.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. Blömer, “Computing Sums of Radicals in Polynomial Time”, Proc. 32nd Symposium on Foundations of Computer Science 1991, pp. 670–677.Google Scholar
  3. 3.
    J. Blömer, “Denesting Ramanujan’s Nested Radicals”, Proc. 33nd Symposium on Foundations of Computer Science 1992, pp. 447–456.Google Scholar
  4. 4.
    J. Blömer, “Denesting by Bounded Degree Radicals”, Proc. 5th European Symposium on Algorithms, Lecture Notes in Computer Science, Vol. 1284, pp. 53–63, 1997.Google Scholar
  5. 5.
    R. P. Brent, “Fast Multiple-Precision Evaluation of Elementary Functions”, Journal of the ACM, Vol. 23, pp. 242–251, 1976.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    C. Burnickel, K. Mehlhorn, S. Schirra, “How to Compute the Voronoi Diagrams of Line Segments”, Proc. 2nd European Symposium on Algorithms, Lecture Notes in Computer Science, Vol. 855, pp. 227–239, 1994.Google Scholar
  7. 7.
    C. Burnikel, R. Fleischer, K. Mehlhorn, S. Schirra, “A Strong and Easily Computable Separation Bound for Arithmetic Expressions Involving Radicals”, Proc. 8th ACM-SIAM Symposium on Discrete Algorithms, 1997, pp. 702–709.Google Scholar
  8. 8.
    Z.-Z. Chen. M.-Y. Kao, “Reducing Randomness via Irrational Numbers”, Proc. 29th Symposium on Theory of Computing, 1997, pp. 200–209.Google Scholar
  9. 9.
    G. Horng, M.-D. Huang, “Simplifying Nested Radicals and Solving Polynomials by Radicals in Minimum Depth”, Proc. 31st Symposium on Foundations of Computer Science 1990, pp. 847–854.Google Scholar
  10. 10.
    S. Landau, “Simplification of Nested Radicals”, SIAM Journal on Computing Vol. 21, No. 1, pp 85–110, 1992.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    S. Lang, Algebra, 3rd edition, Addison-Wesley, 1993.Google Scholar
  12. 12.
    G. Liotta, F. P. Preparata, R. Tamassia, “Robust Proximity Queries in Implicit Voronoi Diagrams”, Technical Report RI 02912-1910, Center for Geometric Computation, Department of Computer Science, Brown University, 1996.Google Scholar
  13. 13.
    M. Mignotte, “Identification of Algebraic Numbers”, Journal of Algorithms, Vol. 3(3), 1982.Google Scholar
  14. 14.
    C. L. Siegel, “Algebraische Abhängigkeit von Wurzeln”, Acta Arithmetica, Vol. 21, pp. 59–64, 1971.Google Scholar
  15. 15.
    C. K. Yap, “Towards Exact Geometric Computation”, Proc. Canadian Conference on Computational Geometry, 1993, pp. 405–419.Google Scholar
  16. 16.
    C. K. Yap, T. Dubé “The Exact Computation Paradigm”, in D. Z. Du, F. Hwang, editors, Computing in Euclidean Geometry, World Scientific Press, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Johannes Blömer
    • 1
  1. 1.Institut für Theoretische InformatikETH Zürich, ETH ZentrumZürichSwitzerland

Personalised recommendations