Fast Algorithms for Linear Algebra Modulo N

  • Arne Storjohann
  • Thom Mulders
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1461)

Abstract

Many linear algebra problems over the ring N of integers modulo N can be solved by transforming via elementary row operations an n × m input matrix A to Howell form H. The nonzero rows of H give a canonical set of generators for the submodule of (N)m generated by the rows of A. In this paper we present an algorithm to recover H together with an invertible transformation matrix P which satisfies PA = H. The cost of the algorithm is O(nmω−1) operations with integers bounded in magnitude by N. This leads directly to fast algorithms for tasks involving N-modules, including an O(nmω−1) algorithm for computing the general solution over N of the system of linear equations xA = b, where b ∈ (N)m.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.Google Scholar
  2. 2.
    E. Bach. Linear algebra modulo N. Unpublished manuscript., December 1992.Google Scholar
  3. 3.
    D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9:251–280, 1990.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. A. Howell. Spans in the module ( m)s. Linear and Multilinear Algebra, 19:67–77, 1986.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Newman. Integral Matrices. Academic Press, 1972.Google Scholar
  6. 6.
    A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281–292, 1971.MATHCrossRefGoogle Scholar
  7. 7.
    A. Storjohann and G. Labahn. Asymptotically fast computation of Hermite normal forms of integer matrices. In Y. N. Lakshman, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’ 96, pages 259–266. ACM Press, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Arne Storjohann
    • 1
  • Thom Mulders
    • 1
  1. 1.Institute of Scientific ComputingETH ZurichSwitzerland

Personalised recommendations