Place/transition Petri Nets

  • Jörg Desel
  • Wolfgang Reisig
I Basic Classes

Abstract

This contributions provides an introduction to the theory of place/transition Petri nets. Topics include the sequential and the concurrent behavior of place/ transition Petri nets, marking graphs and coverability trees, and some analysis techniques that are based on the structure of place/transition Petri nets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BeDe90]
    E. Best and J. Desel. Partial order behaviour and structure of Petri nets. Formal Aspects of Computing 2(2):123–138, 1990.Google Scholar
  2. [BeFe88]
    E. Best and C. Fernandez C. Nonsequential Processes — a Petri Net View. EATCS Monographs on Theoretical Computer Science Vol. 13, Springer-Verlag, 1988.Google Scholar
  3. [Brau80]
    W. Brauer (Ed.) Net Theory and Applications. Vol. 84 of Lecture Notes in Computer Science, Springer-Verlag, 1980.Google Scholar
  4. [BRR87]
    W. Brauer, W. Reisig and G. Rozenberg (eds.). Petri nets: Central Models and Their Properties, Advances in Petri Nets 1986, part I, Vol. 254 of Lecture Notes in Computer Science, Springer-Verlag, 1987.Google Scholar
  5. [DeEs95]
    J. Desel and J. Esparza. Free Choice Petri Nets, Vol. 40 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1995.Google Scholar
  6. [DeMe90]
    J. Desel and A. Merceron. P/T-systems as abstractions of C/E-systems. G. Rozenberg (ed.): Advances in Petri Nets 1989, Vol. 424 of Lecture Notes in Computer Science, Springer-Verlag, 1989.Google Scholar
  7. [Dese98]
    J. Desel. Basic linear algebraic techniques for place/transition nets. Advanced Course on Petri Nets, 1996, in this volume.Google Scholar
  8. [EsNi94]
    J. Esparza and M. Nielsen. Decidability issues for Petri nets. GI Petri Net Newsletter, 47:5–23, 1994.Google Scholar
  9. [Espa98]
    J. Esparza. Decdability and complexity of Petri net problems — an introduction. Advanced Course on Petri Nets, 1996, in this volume.Google Scholar
  10. [Golt9a]
    U. Goltz. On condition/event representation of place/ transition nets. K. Voss, H.J. Genrich and P.S. Thiagarajan (eds.): Concurrency and Nets, pp. 217–231, Springer-Verlag, 1990.Google Scholar
  11. [GoRe83]
    U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Information and Control, 3:125–147, 1983.Google Scholar
  12. [Jant87]
    M. Jantzen. Complexity of place/transition nets. In [BRR87], pp. 413–435.Google Scholar
  13. [Java80]
    M. Jantzen and R. Valk. Formal properties of place/transition nets. In [Brau80], pp. 165–21.Google Scholar
  14. [Jens98]
    K. Jensen. An introduction to the practical use of coloured Petri nets. Advanced Course on Petri Nets, 1996, in this volume.Google Scholar
  15. [Kosa82]
    S.R. Kosaraju. Decidability of reachablity in vector addition systems. 14th Annual ACM Symposium on Theory of Computing, San Francisco, pp. 267–281, 1982.Google Scholar
  16. [Laut87]
    K. Lautenbach. Linear algebraic techniques for place/ transition nets. In [BRR87], pp. 142–167.Google Scholar
  17. [Mayr84]
    E.W. Mayr. An algorithm for the general Petri net reachability problem. SIAM Journal of Computing, 13(3):441–459, 1984.Google Scholar
  18. [Mura89]
    T. Murata. Petri net: properties, analysis and application. Proceedings of the IEEE 77(4):541–580, 1989.Google Scholar
  19. [Pete8l]
    J. L. Peterson. Petri net Theory and the Modelling of Systems. Prentice-Hall, Englewood Cliffs, 1981.Google Scholar
  20. [Reis85]
    W. Reisig. Petri Nets. EATCS Monographs on Theoretical Computer Science Vol. 4, Springer-Verlag, 1985.Google Scholar
  21. [Reis87]
    W. Reisig. Place/transition systems. In [BRR87], pp. 117–141.Google Scholar
  22. [Reut88]
    C. Reutenauer. The Mathematics of Petri Nets. Masson (1988).Google Scholar
  23. [RoEn98]
    G. Rozenberg and J. Engelfriet. Elementary net systems. Advanced Course on Petri Nets, 1996, in this volume.Google Scholar
  24. [Valm98]
    A, Valmari. The state explosion problem. Advanced Course on Petri Nets, 1996, in this volume.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Jörg Desel
    • 1
  • Wolfgang Reisig
    • 2
  1. 1.Institut für Angewandte Informatik und Formale BeschreibungsverfahrenUniversität KarlsruheGermany
  2. 2.Institut für InformatikHumboldt-Universität zu BerlinGermany

Personalised recommendations