Advertisement

A reactive architecture for RoboCup competition

  • E. Pagello
  • F. Montesello
  • A. D'Angelo
  • C. Ferrari
Simulator Teams
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1395)

Abstract

We illustrate PaSo-Team (The University of Padua Simulated Robot Soccer Team), a Multi-Agent System able to play soccer game for participating to the Simulator League of RoboCup competition. PaSo-Team looks like a partially reactive system built upon a number of specialized behaviors, just designed for a soccer play game and generating actions accordingly with environmental changes. A general description of the architecture and a guideline of main ideas is presented in the paper, whereas a more detailed description of actual implementation is given in the appendix.

Keywords

Mobile Robot Ball Position Soccer Game Default Position Fixed Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.L. Anderson and M. Donath. Animal behaviour as a paradigm for developing robot autonomy. In Pattie Maes, editor, Designing Autonomous Agents, pages 145–168. The MIT Press, Cambridge (MA), 1990.Google Scholar
  2. 2.
    F. Bidinotto, A. Bissacco, M. Dal Santo, W. Frasson, S. Griggio, A. F. Grisotto, S. Marzolla, F. Montesello, and E. Pagello. Implementing a soccer client team for robocup '97 competition. Technical report, LADSEB-CNR, Padua (I), 1997.Google Scholar
  3. 3.
    R. Brooks. A layered intelligent control system for a mobile robot. IEEE J. on Rob. and Aut., RA-2:14–23, Apr. 1986.Google Scholar
  4. 4.
    J. H. Connell. Minimalist Mobile Robotics. Number 5 in Perspective in Artificial Intelligence. Academic Press, 1990.Google Scholar
  5. 5.
    A. D'Angelo. Using a chemical metaphor to implement autonomous systems. In M. Gori and G. Soda, editors, Topics in Artificial Intelligence, volume 992 of Lecture Notes in A.I., pages 315–322. Springer-Verlag, Florence (I), 1995.Google Scholar
  6. 6.
    L. P. Kaelbling and S. J. Rosenschein. Action and planning in embedded agents. In Pattie Maes, editor, Designing Autonomous Agents, pages 35–48. The MIT Press, Cambridge (MA), 1990.Google Scholar
  7. 7.
    Pattie Maes. Situated agents can have goals. In Pattie Maes, editor, Designing Autonomous Agents, pages 49–70. The MIT Press, Cambridge (MA), 1990.Google Scholar
  8. 8.
    D. McFarland. Towards robot cooperation. In From Animals to Animats 4, Int. Conf. on Simulation of Adaptive Behavior (SAB-94), Brighton, 1994.Google Scholar
  9. 9.
    L.E. Parker. Alliance: an architecture for fault tolerant, cooperative control of heterogeneous mobile robots. In Proc. of IROS'97, pages 776–783, 1994.Google Scholar
  10. 10.
    M. Rude, T. Rupp, K. Matsumoto, S. Sutedjo, and S. Yuta. Iron: An inter robot network and three examples on multiple mobile robots' motion coordiantion. In Proc. of IROS'97, pages 1437–1444, Grenoble, Sept. 1997.Google Scholar
  11. 11.
    P. Stone and M. Veloso. A layered approach to learning client behaviours in the robocup soccer server. In http:// www.cs.cmu.edu/afs/es/user/mmv/www/papers/AAI96.ps.gz, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • E. Pagello
    • 1
    • 2
  • F. Montesello
    • 1
  • A. D'Angelo
    • 3
  • C. Ferrari
    • 1
  1. 1.Dept. of Electronics and InformaticsPadua UniversityItaly
  2. 2.Inst. LADSEB of CNRPaduaItaly
  3. 3.Dept. of Mathematics and InformaticsUdine UniversityItaly

Personalised recommendations