Advertisement

Colimits of order-sorted specifications

  • Till Mossakowski
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1376)

Abstract

We prove cocompleteness of the category of CASL signatures, of monotone signatures, of strongly regular signatures and of strongly locally filtered signatures. This shows that using these signature categories is compatible with a pushout or colimit based module system.

Keywords

Full Subcategory Predicate Symbol Signature Category Left Adjoint Local Filtration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Adámek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. Wiley, New York, 1990.Google Scholar
  2. 2.
    F. Borceux. Handbook of Categorical Algebra I-III. Cambridge University Press, 1994.Google Scholar
  3. 3.
    R. M. Burstall and J. A. Goguen. Putting theories together to make specifications. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, pages 1045–1058. Cambridge, 1977.Google Scholar
  4. 4.
    M. Cerioli, A. Haxthausen, B. Krieg-Briickner, and T. Mossakowski. Permissive subsorted partial logic in CASL. In M. Johnson, editor, Algebraic methodology and software technology: 6th international conference, AMAST 97, volume 1349 of Lecture Notes in Computer Science. Springer-Verlag, 1997.Google Scholar
  5. 5.
    CoFI Task Group on Language Design. CASL-The CoFI Algebraic Specification Language-Summary. CoFI Document: CASL/Summary. WWW12, FTP13 September 1997.Google Scholar
  6. 6.
    CoFI Task Group on Semantics. CASL-The CoFI Algebraic Specification Language (version 0.97)-Semantics. CoFI Note: S-6. WWW14, FTP15, July 1997.Google Scholar
  7. 7.
    R. Diaconescu and K. Futatsugi. Logical semantics of CafeOBJ. Technical report IS-RR-96-0024S, JAIST, 1996.Google Scholar
  8. 8.
    J. A. Goguen. A categorical manifesto. Mathematical Structures in Computer Science, 1:49–67, 1991.Google Scholar
  9. 9.
    J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery, 39:95–146, 1992. Predecessor in: LNCS 164, 221–256, 1984.Google Scholar
  10. 10.
    J. A. Goguen and J. Meseguer. Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer Science, 105:217–273, 1992.Google Scholar
  11. 11.
    J. A. Goguen and T. Winkler. Introducing OBJ3. Research report SRI-CSL-88-9, SRI International, 1988.Google Scholar
  12. 12.
    A. Haxthausen and F. Nickl. Pushouts of order-sorted algebraic specifications. In Proceedings of AMAST'96, volume 1101 of Lecture Notes in Computer Science, pages 132-?? Springer-Verlag, 1996.Google Scholar
  13. 13.
    T. Mossakowski. Equivalences among various logical frameworks of partial algebras. In H. K. Büning, editor, Computer Science Logic. 9th Workshop, CSL'95. Paderborn, Germany, September 1995, Selected Papers, volume 1092 of Lecture Notes in Computer Science, pages 403–433. Springer Verlag, 1996.Google Scholar
  14. 14.
    T. Mossakowski, Kolyang, and B. Krieg-Briickner. Static semantic analysis of CASL. 12th Workshop on Algebraic Development Techniques, Tarquinia. This volume, 1997.Google Scholar
  15. 15.
    P. D. Mosses. CoFI: The common framework initiative for algebraic specification and development. In M. Bidoit and M. Dauchet, editors, Theory and Practice of Software Development, LNCS 1214, pages 115–137. Springer Verlag, 1997.Google Scholar
  16. 16.
    O. Owe and O.-J. Dahl. Generator induction in order sorted algebras. Formal Aspects of Computing, 3:2–20, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Till Mossakowski
    • 1
  1. 1.Department of Computer ScienceUniversity of BremenBremenGermany

Personalised recommendations