Advertisement

An inductive view of graph transformation

  • F. Gadducci
  • R. Heckel
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1376)

Abstract

The dynamic behavior of rule-based systems (like termrewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result is built: This is the role played by (the application of) a substitution in term rewriting. Or inductively, showing how to build the class of all possible reductions from a set of basic ones: For term rewriting, this is the usual definition of the rewrite relation as the minimal closure of the rewrite rules. As far as graph transformation is concerned, the operational view is by far more popular: In this paper we lay the basis for the orthogonal view. We first provide an inductive description for graphs as arrows of a freely generated dgs-monoidal category. We then apply 2-categorical techniques, already known for term and term graph rewriting [29, 7], recasting in this framework the usual description of graph transformation via double-pushout [13].

Keywords

Graph Production Graph Transformation Monoidal Category Derivation Step Graph Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bauderon and B. Courcelle. Graph expressions and graph rewritings. Mathematical Systems Theory, 20:83–127, 1987.CrossRefGoogle Scholar
  2. 2.
    S. Bloom and Z. ésik. Iteration Theories. EATCS Monographs on Theoretical Computer Science. Springer Verlag, 1993.Google Scholar
  3. 3.
    S. Bloom and Z. ésik. Solving polinomials fixed point equations. In Mathematical Foundations of Computer Science, volume 841 of LNCS, pages 52–67. Springer Verlag, 1994.Google Scholar
  4. 4.
    S.L. Bloom, Z. ésik, A. Labella, and E.G. Manes. Iteration 2-theories. In Proceedings AMAST'97, 1997. To appear.Google Scholar
  5. 5.
    A. Carboni and R.F.C. Walters. Cartesian bicategories I. Journal of Pure and Applied Algebra, 49:11–32, 1987.Google Scholar
  6. 6.
    A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Abstract Graph Derivations in the Double-Pushout Approach. In H.-J. Schneider and H. Ehrig, editors, Proceedings of the Dagstuhl Seminar 9301 on Graph Transformations in Computer Science, volume 776 of LNCS, pages 86–103. Springer Verlag, 1994.Google Scholar
  7. 7.
    A. Corradini and F. Gadducci. A 2-categorical presentation of term graph rewriting. In Proceedings CTCS'97, volume 1290 of LNCS. Springer Verlag, 1997.Google Scholar
  8. 8.
    A. Corradini and F. Gadducci. Rewriting cyclic structures. draft, 1997.Google Scholar
  9. 9.
    A. Corradini and F. Gadducci. An algebraic presentation of term graphs, via gs-monoidal categories. Applied Categorical Structures, 1998. To appear. Available at http://www.di.unipi.it/~gadducci/papers/aptg.ps.Google Scholar
  10. 10.
    A. Corradini and F. Gadducci. Rational term rewriting. In M. Nivat, editor, Proceedings FoSSaCS'98, LNCS. Springer Verlag, 1998. To appear.Google Scholar
  11. 11.
    A. Corradini, F. Gadducci, and U. Montanari. Relating two categorical models of term rewriting. In Rewriting Tecniques and Applications, volume 914 of LNCS, pages 225–240. Springer Verlag, 1995.Google Scholar
  12. 12.
    A. Corradini and U. Montanari. An Algebra of Graphs and Graph Rewriting. In Proceedings of the 4 th Summer Conference on Category Theory and Computer Science (CTCS '91), volume 530 of LNCS, pages 236–260. Springer Verlag, 1991.Google Scholar
  13. 13.
    A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Lowe. Algebraic Approaches to Graph Transformation I: Basic Concepts and Double Pushout Approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transformation. World Scientific, 1997.Google Scholar
  14. 14.
    H. Ehrig, P. Boehm, U. Hummert, and M. Lowe. Distributed parallelism of graph transformation. In 13th Int. Workshop on Graph Theoretic Concepts in Computer Science, volume 314 of LNCS, pages 1–19. Springer Verlag, 1988.Google Scholar
  15. 15.
    H. Ehrig, M. Pfender, and H.J. Schneider. Graph-grammars: an algebraic approach. In Proceedings IEEE Conf. on Automata and Switching Theory, pages 167–180, 1973.Google Scholar
  16. 16.
    A. Habel. Hyperedge replacement: Grammars and languages, volume 643 of LNCS. Springer Verlag, 1992.Google Scholar
  17. 17.
    U. Hensel and D. Spooner. A view on implementing processes: Categories of circuits. In M. Haveraaen, O. Owe, and O. Dahl, editors, Recent Trends in Data Types Specification, volume 1130 of LNCS, pages 237–255. Springer Verlag, 1995.Google Scholar
  18. 18.
    H.-J. Hoenke. On partial recursive definitions and programs. In International Conference on Fundamentals of Computations Theory, volume 56 of LNCS, pages 260–274. Springer Verlag, 1977.Google Scholar
  19. 19.
    B. Jacobs. Semantics of weakening and contraction. Annals of Pure and Applied Logic, 69:73–106, 1994.Google Scholar
  20. 20.
    A. Joyal, R. Street, and D. Verity. Traced Monoidal Category. Mathematical Proceedings of the Cambridge Philosophical Society, 119:425–446, 1996.Google Scholar
  21. 21.
    P. Katis, N. Sabadini, and R.F.C. Walters. Bicategories of processes. Journal of Pure and Applied Algebra, 115:141–178, 1997.Google Scholar
  22. 22.
    P. Katis, N. Sabadini, and R.F.C. Walters. Span(graph): A categorical algebra of transition systems. to appear Proceedings AMAST'97, 1997.Google Scholar
  23. 23.
    G.M. Kelly and R.H. Street. Review of the elements of 2-categories. In G.M. Kelly, editor, Proceedings of the Sydney Category Seminar, volume 420 of Lecture Notes in Mathematics, pages 75–103. Springer Verlag, 1974.Google Scholar
  24. 24.
    J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 1, pages 1–116. Oxford University Press, 1992.Google Scholar
  25. 25.
    Y. Lafont. Equational reasoning with 2-dimensional diagrams. In Term Rewriting, French Spring School of Theoretical Computer Science, volume 909 of LNCS, pages 170–195. Springer Verlag, 1995.Google Scholar
  26. 26.
    F.W. Lawvere. Functorial semantics of algebraic theories. Proc. National Academy of Science, 50:869–872, 1963.Google Scholar
  27. 27.
    R. Milner. Communication and Concurrency. Prentice Hall, 1989.Google Scholar
  28. 28.
    A.J. Power. An abstract formulation for rewrite systems. In Proceedings Category Theory in Computer Science, volume 389 of LNCS, pages 300–312. Springer Verlag, 1989.Google Scholar
  29. 29.
    J. Power. A 2-categorical parsing theorem. Journal of Algebra, 129:439–445, 1990.Google Scholar
  30. 30.
    G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transformation. World Scientific, 1997.Google Scholar
  31. 31.
    D.E. Rydehard and E.G. Stell. Foundations of equational deductions: A categorical treatment of equational proofs and unification algorithms. In Proceedings Category Theory in Computer Science, volume 283 of LNCS, pages 114–139. Springer Verlag, 1987.Google Scholar
  32. 32.
    G. Stefanescu. On flowchart theories: Part II. The nondeterministic case. Theoret. Comput. Sci., 52:307–340, 1987.Google Scholar
  33. 33.
    G. Stefanescu. Algebra of flownomials. Technical Report SFB-Bericht 342/16/94 A, Technical University of München, Institut für Informatik, 1994.Google Scholar
  34. 34.
    J.G. Stell. Categorical Aspects of Unification and Rewriting. PhD thesis, University of Manchester, 1992.Google Scholar
  35. 35.
    R. Street. Categorical structures. In M. Hazewinkel, editor, Handbook Of Algebra, pages 529–577. Elsevier, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • F. Gadducci
    • 1
  • R. Heckel
    • 2
  1. 1.TUB, Fachbereich 13 InformatikBerlinGermany
  2. 2.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations