InteractiveGiotto: An algorithm for interactive orthogonal graph drawing

  • Stina S. Bridgeman
  • Jody Fanto
  • Ashim Garg
  • Roberto Tamassia
  • Luca Vismara
Systems I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1353)

Abstract

We present InteractiveGiotto, an interactive algorithm for orthogonal graph drawing based on the network flow approach to bend minimization.

References

  1. 1.
    T. C. Biedl and M. Kaufmann. Area-efficient static and incremental graph darwings. In R. Burkard and G. Woeginger, editors, Algorithms (Proc. ESA '97), volume 1284 of Lecture Notes Comput. Sci., pages 37–52. Springer-Verlag, 1997.Google Scholar
  2. 2.
    R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. Dynamic graph drawings: Trees, series-parallel digraphs, and planar ST-digraphs. SIAM J. Comput., 24(5):970–1001, 1995.CrossRefGoogle Scholar
  3. 3.
    P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a diagram. In Proceedings of Compugraphics 91, pages 24–33, 1991.Google Scholar
  4. 4.
    W. He and K. Marriott. Constrained graph layout. In S. North, editor, Graph Drawing (Proc. GD '96), volume 1190 of Lecture Notes Comput. Sci., pages 217–232. Springer-Verlag, 1997.Google Scholar
  5. 5.
    K. Mehlhorn and S. Näher. LEDA: a platform for combinatorial and geometric computing. Commun. ACM, 38:96–102, 1995.CrossRefGoogle Scholar
  6. 6.
    K. Miriyala, S. W. Hornick, and R. Tamassia. An incremental approach to aesthetic graph layout. In Proc. Internat. Workshop on Computer-Aided Software Engineering, 1993.Google Scholar
  7. 7.
    K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map. J. Visual Lang. Comput., 6:183–210, 1995.CrossRefGoogle Scholar
  8. 8.
    S. Moen. Drawing dynamic trees. IEEE Softw., 7:21–28, 1990.CrossRefGoogle Scholar
  9. 9.
    S. North. Incremental layout in DynaDAG. In F. J. Brandenburg, editor, Graph Drawing (Proc. CD '95), volume 1027 of Lecture Notes Comput. Sci., pages 409–418. Springer-Verlag, 1996.Google Scholar
  10. 10.
    A. Papakostas, J. M. Six, and I. G. Tollis. Experimental and theoretical results in interactive orthogonal graph drawing. In S. North, editor, Graph Drawing (Proc. GD '96), volume 1190 of Lecture Notes Comput. Sci., pages 371–386. Springer-Verlag, 1997.Google Scholar
  11. 11.
    A. Papakostas and I. G. Tollis. Interactive orthogonal graph drawing. Technical report, The University of Texas at Dallas, 1996. http://www.utdallas.edu/~tollis/papers/interactive_J.ps.Google Scholar
  12. 12.
    A. Papakostas and I. G. Tollis. Issues in interactive orthogonal graph drawing. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of Lecture Notes Comput. Sci., pages 419–430. Springer-Verlag, 1996.Google Scholar
  13. 13.
    K. Ryall, J. Marks, and S. Shieber. An interactive system for drawing graphs. In S. North, editor, Graph Drawing (Proc. GD '96), volume 1190 of Lecture Notes Comput. Sci., pages 387–394. Springer-Verlag, 1997.Google Scholar
  14. 14.
    R. Tamassia. New layout techniques for entity-relationship diagrams. In Proc. 4th Internat. Conf. on Entity-Relationship Approach, pages 304–311, 1985.Google Scholar
  15. 15.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.CrossRefGoogle Scholar
  16. 16.
    R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–79, 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Stina S. Bridgeman
    • 1
  • Jody Fanto
    • 1
  • Ashim Garg
    • 2
  • Roberto Tamassia
    • 1
  • Luca Vismara
    • 1
  1. 1.Center for Geometric Computing, Department of Computer ScienceBrown UniversityUSA
  2. 2.Department of Computer ScienceState University of New York at BuffaloUSA

Personalised recommendations