ArchE: A graph drawing system for archaeology

  • Christoph Hundack
  • Petra Mutzel
  • Igor Pouchkarev
  • Stefan Thome
Systems I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1353)


We present ArchE (Archaeological Editor), a system for processing and displaying archaeological data. ArchE checks these data for consistency, simplifies and displays them; for each of these steps ArchE offers a number of different algorithms. The interactive features (eg input, data editing and modification of the layout) are easy to handle. Furthermore, ArchE contains algorithms for focusing on user-defined aspects of the data.

Apart from archaeological applications, ArchE can be used as a general graph drawing system.


  1. 1.
    A. V. Aho, M. R. Garey, and J. Ullman. The transitive reduction of a directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.CrossRefGoogle Scholar
  2. 2.
    D. Alberts, C. Gutwenger, P. Mutzel, and S. Näher. AGD-library: A library of algorithms for graph drawing. Technical report, Max-Planck-Institut für Informatik, Saarbrücken, 1997.Google Scholar
  3. 3.
    M. de Berg, M. Overmars, and M. van Kreveld. Finding complete bipartite subgraphs in bipartite graphs. ALCOM: Algorithms Review, Newsletter of the ESPRIT II Basic Research Actions Program Project no. 3075 (ALCOM), 1, 1990.Google Scholar
  4. 4.
    E. C. Harris. Principles of Archaeological Stratigraphy. Academic Press, London, San Diego, 2nd edition, 1989.Google Scholar
  5. 5.
    I. Herzog. Computer-aided harris matrix generation. In E. Harris, editor, Practices of archaeological stratigraphy, pages 201–217, London, 1993.Google Scholar
  6. 6.
    E. Koutsofios and S. C. North. Drawing graphs with dot. Technical report, AT&T Bell Laboratories, Murray Hill NJ, 1992.Google Scholar
  7. 7.
    E. Koutsofios and S. C. North. Applications of graph visualisation. Technical report, AT&T Bell Laboratories, Murray Hill NJ, 1994.Google Scholar
  8. 8.
    F. Newbery Paulisch. The Design of an Extendible Graph Editor. Number 704 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1993.Google Scholar
  9. 9.
    I. Rival. Reading, drawing, and order. In I. Rosenberg and G. Sabidussi, editors, Algebras and orders, volume 389 of NATO ASI Series [Series C: Mathematical and physical Sciences], pages 359–404, Dordrecht, 1993.Google Scholar
  10. 10.
    G. Sander. Graph layout through the VCG tool. Technical report, FB14 Informatik, Universität des Saarlandes, Saarbrücken, 1994.Google Scholar
  11. 11.
    K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, & Cybernetics, 11(2):109–125, Feb. 1981.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Christoph Hundack
    • 1
  • Petra Mutzel
    • 1
  • Igor Pouchkarev
    • 1
  • Stefan Thome
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations