Advertisement

The wobbly logic engine: Proving hardness of non-rigid geometric graph representation problems

Extended abstract
  • Sándor P. Fekete
  • Michael E. Houle
  • Sue Whitesides
Methodologies and Applications I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1353)

Abstract

The logic engine technique has been used in the past to establish the NP-hardness of a number of graph representations. The original technique can only be applied in those situations in which subgraphs exist for which the only possible layouts are rigid. In this paper we introduce an extension called the wobbly logic engine which can be used to prove the NP-hardness of several graph representations for which no such rigid layouts exist, representations by visibility and intersection in particular. We illustrate the method by using the wobbly technique to show the NP-hardness of deciding whether a graph has a nondegenerate z-axis parallel visibility representation (ZPR) by unit squares.

Keywords

Intersection Graph Full Version Graph Draw Logic Engine Connector Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Alt, M. Godau, and S. Whitesides. Universal 3-dimensional visibility representations for graphs. Proc. Graph Drawing 95, Passau 1996. Lecture Notes in Computer Science Vol. 1027, Springer-Verlag, 1996, pp. 8–19.Google Scholar
  2. 2.
    A. Bachem, S. P. Fekete, B. Knab, R. Schrader, I. Vannahme, I. Weber, R. Wegener, K. Weinbrecht, and B. Wichern. Analyse großer Datenmengen und Clusteralgorithmen im Bausparwesen. In Geld, Finanzwirtschaft, Banken und Versicherungen. Editors C. Hipp et al., VVW Karlsruhe, 1997.Google Scholar
  3. 3.
    P. Bose, H. Everett, S. P. Fekete, A. Lubiw, H. Meijer, K. Romanik, T. Shermer, and S. Whitesides. On a visibility representation for graphs in three dimensions. Proc. Graph Drawing '93, Paris (Sèvres), 1993, pp. 38–39.Google Scholar
  4. 4.
    P. Bose, H. Everett, S. P. Fekete, A. Lubiw, H. Meijer, K. Romanik, T. Shermer, and S. Whitesides. On a visibility representation for graphs in three dimensions. Snapshots of Computational and Discrete Geometry, 3, eds. D. Avis and P. Bose, McGill University School of Computer Science Technical Report SOGS-94.50, July 1994, pp. 2–25.Google Scholar
  5. 5.
    P. Bose, H. Everett, S. P. Fekete, M. E. Houle A. Lubiw, H. Meijer, K. Romanik, G. Rote, T. Shermer, S. Whitesides, and C. Zelle. A visibility representation for graphs in three dimensions. Technical Report ZPR 97-253, Center for Parallel Computing, 1997. Available at ftp://ftp.zpr.uni-koeln.de/pub/papers/zpr97-253. ps.gz.Google Scholar
  6. 6.
    S. Bhatt and S. Cosmadakis. The complexity of minimizing wire lengths in VLSI layouts. Information Processing Letters, v. 25, 1987, pp. 263–267.CrossRefGoogle Scholar
  7. 7.
    F. J. Brandenburg. Nice drawings of graphs and trees are computationally hard. Technical Report MIP-8820, Fakultät für Mathematik und Informatik, Univ. Passau, 1988.Google Scholar
  8. 8.
    F.J. Cobos, J.C. Dana, F. Hurtado, A. Marquez, and F. Mateos On a visibility representation of graphs. Proc. Graph Drawing 95, Passau 1996. Lecture Notes in Computer Science Vol. 1072, Springer-Verlag, 1996, pp. 152–161.Google Scholar
  9. 9.
    R. Cohen, P. Eades, T. Lin, and F. Ruskey. Three-dimensional graph drawing. Proc. Graph Drawing '94, Princeton NJ, 1994. Lecture Notes in Computer Science LNCS Vol. 894, Springer-Verlag, 1995, pp. 1–11.Google Scholar
  10. 10.
    L. Danzer, B. Grünbaum, and V. Klee. Helly's theorem and its relatives. Convexity, Proc.7 th ACM Symp. Pure Math., 1963, pp. 101–181.Google Scholar
  11. 11.
    A. Dean and J. Hutchinson. Rectangle visibility representations of bipartite graphs. Proc. Graph Drawing '94, Princeton NJ, 1994. Lecture Notes in Computer Science LNCS Vol. 894, Springer-Verlag, 1995, pp. 159–166.Google Scholar
  12. 12.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for automatic graph drawing: an annotated bibliography. Comput. Geometry: Theory and Applications, 4, 1994, pp. 235–282. Also available from wilma.cs.brown.edu by ftp.Google Scholar
  13. 13.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Algorithms for geometric representation of graphs. Prentice Hall, to appear.Google Scholar
  14. 14.
    G. Di Battista, G. Liotta and S. Whitesides. The strength of weak proximity. Proc. Graph Drawing 95, Passau 1996. Lecture Notes in Computer Science Vol. 1072, Springer-Verlag 1996.Google Scholar
  15. 15.
    G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs. Theoretical Computer Science, 61, 1988, pp. 175–198.CrossRefGoogle Scholar
  16. 16.
    P. Eades and S. Whitesides. The realization problem for Euclidean minimum spanning trees is NP-hard. in Proc. 10th ACM Symp. on Computational Geometry, 1994, pp. 49–56.Google Scholar
  17. 17.
    P. Eades and S. Whitesides. The logic engine and the realization problem for nearest neighbor graphs. Theoretical Computer Science, 169 (1), 1996, pp. 23–37.CrossRefGoogle Scholar
  18. 18.
    H. ElGindy, G. Liotta, A. Lubiw, H. Meijer and S. Whitesides. Recognizing rectangle of influence drawable graphs. Proc. Graph Drawing '94, Princeton NJ, 1994, Lecture Notes in Computer Science LNCS #894, Springer-Verlag, 1995 pp. 352–363.Google Scholar
  19. 19.
    S. P. Fekete, M. E. Houle, and S. Whitesides. New results on a visibility representation of graphs in 3D. Proc. Graph Drawing 95, Passau 1996. Lecture Notes in Computer Science Vol. 1072, Springer-Verlag 1996, pp. 234–241.Google Scholar
  20. 20.
    S. P. Fekete, M. E. Houle, and S. Whitesides. The wobbly logic engine: proving hardness of non-rigid graph representation problems. (Full version). Technical Report ZPR 97-273, Center for Parallel Computing, 1997. Available at ftp://ftp.zpr.uni-koeln.de/pub/papers/zpr97-273.ps.gz.Google Scholar
  21. 21.
    S. P. Fekete and H. Meijer. Rectangle and box visibility graphs in 3D. To appear in International Journal of Computational Geometry and Applications. Available at ftp://ftp.zpr.uni-koeln.de/pub/papers/ zpr96-224.ps.gz.Google Scholar
  22. 22.
    M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.Google Scholar
  23. 23.
    J. Hutchinson, T. Shermer, and A. Vince. On representations of some thickness-two graphs. Proc. Graph Drawing 95, Passau 1996. Lecture Notes in Computer Science Vol. 1072, Springer-Verlag 1996, pp. 324–332.Google Scholar
  24. 24.
    P. J. Idicula. Drawing trees in grids. Master's thesis, Department of Computer Science, University of Auckland, 1990.Google Scholar
  25. 25.
    K. Romanik. Directed VR-representable graphs have unbounded dimensions. Proc Graph Drawing '94, Princeton, NJ, 1994, Lecture Notes in Computer Science LNCS Vol. 894, Springer-Verlag, 1995, pp. 177–181.Google Scholar
  26. 26.
    R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs. Discrete Comput. Geom. 1, 1986, pp. 321–341.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Sándor P. Fekete
    • 1
  • Michael E. Houle
    • 2
  • Sue Whitesides
    • 3
  1. 1.Center for Parallel ComputingUniversität zu KölnKölnGermany
  2. 2.Department of Computer ScienceUniversity of NewcastleCallaghan NSWAustralia
  3. 3.School of Computer ScienceMcGill UniversityMontréal, QuébecCanada

Personalised recommendations