Interactive orthogonal graph drawing: Algorithms and bounds

  • Ulrich Fößmeier
Left and Right Turns
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1353)


Incremental graph drawing is a model gaining more and more importance in many applications. We present algorithms that allow insertions of new vertices into an existing drawing without changing the position of the objects drawn so far. We prove bounds for the quality of our drawings and considerably improve on previous bounds. Here the number of bends and the used area are our quality measures. Besides we discuss lower bounds for this problem.


Cost Function Intersection Point Local Degree Free Line Maximum Vertex Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Biedl, T.C., New Lower Bounds for Orthogonal Graph Drawings, Proceedings on GD'95, Passau, 28–39, 1995.Google Scholar
  2. 2.
    Biedl, T.C., Orthogonal Graph Drawing, Algorithms and Lower Bounds, Diploma Thesis TU Berlin, 1995.Google Scholar
  3. 3.
    Batini, C., E. Nardelli and R. Tamassia, A Layout Algorithm for Data-Flow Diagrams, IEEE Trans. on Software Engineering, Vol. SE-12 (4), 538–546, 1986.Google Scholar
  4. 4.
    Batini, C., M. Talamo and R. Tamassia, Computer Aided Layout of EntityRelationship Diagrams, The Journal of Systems and Software, Vol. 4, 163–173, 1984.CrossRefGoogle Scholar
  5. 5.
    CPLEX optimization, Inc. Using the CPLEX Base System. CPLEX Optimization, Inc., 1995.Google Scholar
  6. 6.
    DiBattista G., P. Eades, R. Tamassia and I.G. Tollis, Algorithms for Drawing Graphs: An Annotated Bibliography, Computational Geometry: Theory and Applications, vol. 4, no 5, 235–282, 1994.MathSciNetGoogle Scholar
  7. 7.
    Fößmeier U., Interactive Orthogonal Graph Drawing: Algorithms and Bounds, Technical Report WSI-97-12, University of Tübingen.Google Scholar
  8. 8.
    Garg, A., R. Tamassia, On the computational complexity of upward and rectilinear planarity testing, Proceedings of GD'94, Princeton, 286–297, 1994.Google Scholar
  9. 9.
    Jahrmarkt, F., Knickminimierende Verfahren für interaktives orthogonales Graphenzeichnen, Diplomarbeit Universität Tübingen, 1997 (in German language).Google Scholar
  10. 10.
    Kramer M.R., J. van Leeuwen, The complexity of wire routing and finding minimum area layouts for arbitrary VLSI circuits, Advances in Computer Research, Vol. 2: VLSI Theory, Jai Press, Reading, MA, 129–146, 1992.Google Scholar
  11. 11.
    Misue, K., P. Eades, W. Lai and K. Sugiyama, Layout Adjustment and the Mental Map, Journal of Visual Languages and Computing, vol. 6, 183–210, 1995.CrossRefGoogle Scholar
  12. 12.
    Papakostas, A., J. M. Six, I. G. Tollis, Experimental and Theoretical Results in Interactive Orthogonal Graph Drawing, Proceedings on GD'96, Berkeley, 371–386, 1996.Google Scholar
  13. 13.
    Papakostas, A. and I.G. Tollis, Issues in Interactive Orthogonal Graph Drawing, Proceedings on GD'95, Passau, 419–430, 1995.Google Scholar
  14. 14.
    Papakostas, A. and I.G. Tollis, Improved Algorithms and Bounds for Orthogonal Drawings, Proceedings on GD'94, Princeton, 40–51, 1994.Google Scholar
  15. 15.
    Valiant, L. G., Universality considerations in VLSI circuits, IEEE Trans. Comput., C-30, 135–140, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Ulrich Fößmeier
    • 1
  1. 1.Wilhelm-Schickard-InstitutUniversität TübingenTübingenGermany

Personalised recommendations