GD 1997: Graph Drawing pp 37-46

# Bipartite crossing numbers of meshes and hypercubes

• Ondrej Sykora
• László A. Székely
• Imrich Vrt'o
Planarity and Crossings
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1353)

## Abstract

Let G = (V0, V1, E) be a connected bipartite graph, where V0, V1 is the bipartition of the vertex set V(G) into independent sets. A bipartite drawing of G consists of placing the vertices of V0 and V1 into distinct points on two parallel lines xo, x1, respectively, and then drawing each edge with one straight line segment which connects the points of x0 and x1 where the endvertices of the edge were placed. The bipartite crossing number of G, denoted by bcr(G) is the minimum number of crossings of edges over all bipartite drawings of G. We develop a new lower bound method for estimating bcr(G). It relates bipartite crossing numbers to edge isoperimetric inequalities and Laplacian eigenvalues of graphs. We apply the method, which is suitable for “well structured” graphs, to hypercubes and 2-dimensional meshes. E.g. for the n-dimensional hypercube graph we get n4n−2O(4n) ≤ bcr(Qn) ≤ n4n−1. We also consider a more general setting of the method which uses eigenvalues, but as a trade-off for generality, often gives weaker results.

### References

1. 1.
Ahlswede, R., Bezrukov, S. L., Edge isoperimetric theorems for integer point arrays, Appl. Math. Lett. 8 (1995), 75–80.
2. 2.
Bezrukov, S. L., Edge isoperimetric problems on graphs, Technical Report, Department of Computer Science, University of Paderborn, 1997.Google Scholar
3. 3.
Bollobás, B., Combinatorics, Chapter 16, Cambridge Uni. Press, 1986.Google Scholar
4. 4.
Bollobás, B., Leader, I., Edge-isoperimetric inequalities in the grid, Combinatorica 11 (1991), 299–314.
5. 5.
Bollobás, B., Leader, I., Matchings and paths in cubes, SIAM J. Discrete Mathematics, to appear.Google Scholar
6. 6.
Brandenburg, F. J., Jünger, M., Mutzel, P., Algorithms for automatic graph drawing, Technical Report, Max Planck Institute, MPI-I-97-1-007, Saarbrücken, March 1997, (in German).Google Scholar
7. 7.
Catarci, T., The assignment heuristics for crossing reduction, IEEE transactions on Systems, Man and Cybernetics 25 (1995), 515–521.Google Scholar
8. 8.
Chung, F. R. K., Spectral Graph Theory, Regional Conference Series in Mathematics Number 92, American Mathematical Society, Providence, RI, 1997.Google Scholar
9. 9.
Chung, F. R. K., Füredi, Z., Graham, R. L., Seymour, P. D., On induced subgraphs of the cube, J. Combinatorial Theory (A) 49 (1988), 180–187.
10. 10.
Di Battista, J., Eades, P., Tamassia, R., Tollis, I.G., Algorithms for drawing graphs: an annotated bibliography, Computational Geometry 4 (1994), 235–282.
11. 11.
Eades, P., Wormald, N., Edge crossings in drawings of bipartite graphs, Algorithmica 11 (1994), 379–403.
12. 12.
Garey, M.R., Johnson, D.S., Crossing number is NP-complete, SIAM J. Algebraic and Discrete Methods 4 (1983), 312–316.Google Scholar
13. 13.
Harary, F., Determinants, permanents and bipartite graphs, Mathematical Magazine 42 (1969), 146–148.Google Scholar
14. 14.
Harary, F., Schwenk, A., A new crossing number for bipartite graphs, Utilitas Mathematica 1 (1972), 203–209.Google Scholar
15. 15.
Harper, L. H., Optimal assignements of numbers to vertices, SIAM J. Applied Mathematics 12 (1964), 131–135.
16. 16.
Jünger, M., Mutzel, P., Exact and heuristic algorithm for 2-layer straightline crossing number, in: Proc. Graph Drawing'95, Lecture Notes in Computer Science 1027, Springer Verlag, Berlin, 1996, 337–348.Google Scholar
17. 17.
Juvan, M., Mohar, B., Optimal linear labelings and eigenvalues of graphs, Discrete Applied Mathematics 36 (1992), 153–168.
18. 18.
Muradyan, D.O., Piliposian, T.E., Minimal numberings of vertices of a rectangular lattice, Akad. Nauk Armjan. SSR Doklady 70 (1980), 21–27, (in Russian).Google Scholar
19. 19.
May, M., Szkatula, K., On the bipartite crossing number, Control and Cybernetics 17 (1988), 85–98.Google Scholar
20. 20.
Shahrokhi, F., Sýkora, 0., Székely, L. A., Vr6, On bipartite crossings, biplanar subgraphs, and the linear arrangement problem, in: Proc. 5th Workshop Algorithms and Data Structures, (WADS'97), August 6–8, 1997 Halifax, Nova Scotia, Canada, Lecture Notes in Computer Science Vol. 1272, Springer-Verlag, 55–68.Google Scholar
21. 21.
F. Shahrokhi, L. A. Székely, I. Vrt'o, Crossing numbers of graphs, lower bound techniques and algorithms: a survey, in: Proc. DIMACS Workshop on Graph Drawing'94, Lecture Notes Computer Science 894, Springer Verlag, Berlin, 1995, 131–142.Google Scholar
22. 22.
Spinrad, J., Brandstädt, A., Stewart, L., Bipartite permutation graphs, Discrete Applied Mathematics 19, 1987, 279–292.
23. 23.
Sugiyama, K., Tagawa, S., Toda, M., Methods for visual understanding of hierarchical systems structures, IEEE Transactions on Systems, Man and Cybernetics 11 (1981), 109–125.Google Scholar
24. 24.
25. 25.
Warfield, J., Crossing theory and hierarchy mapping, IEEE Dnnsactions on Systems, Man and Cybernetics 7 (1977), 502–523.Google Scholar
26. 26.
Watkins, M.E., A special crossing number for bipartite graphs: a research problem, Annals of New York Academy Sciences 175 (1970), 405–410.Google Scholar