Voronoi methods in GIS

  • Christopher M. Gold
  • Peter R. Remmele
  • Thomas Roos


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Albers, L.J. Guibas, J.S.B. Mitchell, and T. Roos, Voronoi diagrams of moving points, Tech. Rep. 235, ETH Zürich, 1995, to appear in Intl. J. Comp. Geom. & Appl.Google Scholar
  2. 2.
    F. Aurenhammer, Voronoi diagrams: A survey of a fundamental geometric data structure, ACM Comput. Surv., Vol. 23, pp 345–405, 1991.Google Scholar
  3. 3.
    J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec, Applications of random sampling to on-line algorithms in Computational Geometry, Discrete & Computational Geometry, Vol. 8, pp 51–71, 1992.Google Scholar
  4. 4.
    P. Chew, Near-quadratic bounds for the L 1 Voronoi diagram of moving points, Proc. 5th Canad. Conf. Comp. Geom. CCCG'93, pp 364–369, 1993.Google Scholar
  5. 5.
    N.R. Chrisman, J.A. Dougenik, and D. White, Lessons for the design of polygon overlay processing from the Odyssey Whirlpool algorithm, Proc. 5th Intl. Symp. on Spatial Data Handling SDH'92, Charleston, pp 401–410, 1992.Google Scholar
  6. 6.
    J.P. Corbett, A general topology for spatial reference, SORSA Report, 1985.Google Scholar
  7. 7.
    B.N. Delaunay, Sur la sphere vide, Bull. Acad. Science USSR VII: Class. Science Math., pp 793–800, 1934.Google Scholar
  8. 8.
    O. Devillers and M. Golin, Dog bites postman: Point location in the moving Voronoi diagram and related problems, Proc. 1st Annual European Symp. on Algorithms ESA'93, LNCS 726, pp 133–144, 1993.Google Scholar
  9. 9.
    O. Devillers, S. Meiser, and M. Teillaud, Fully dynamic Delaunay triangulation in logarithmic time per operation, Comp. Geom. Theory & Appl., Vol. 2, pp 55–80, 1992.Google Scholar
  10. 10.
    G. Dutton (Ed.), First International Advanced Symposium on Topological Data Structures for GIS, Harvard University, Cambridge, MA, Vol. 8, 1978.Google Scholar
  11. 11.
    S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica, Vol. 2, pp 153–174, 1987.Google Scholar
  12. 12.
    A.U. Frank, I. Campari, and U. Formentini (Eds.), Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, LNCS 639, 1992.Google Scholar
  13. 13.
    C.M. Gold, An object-based dynamic spatial model, and its application in the development of a user-friendly digitizing system, Proceedings, 5th Intl. Symp. on Spatial Data Handling SDH'92, Charleston, pp 495–504, 1992.Google Scholar
  14. 14.
    C.M. Gold, Problems with handling spatial data — the Voronoi approach, CISM Journal, Vol. 45, No. 1, pp 65–80, 1991.Google Scholar
  15. 15.
    C.M. Gold, Spatial data structures — the extension from one to two dimensions, In: L.F. Pau (Ed.), Mapping and Spatial Modelling for Navigation, NATO ASI Series F, No. 65, Springer-Verlag, Berlin, pp 11–39, 1990.Google Scholar
  16. 16.
    C.M. Gold, The interactive map, In: M. Molenaar and S. de Hoop (Eds.), Advanced Geographic Data Modelling and Query Languages for 2D and 3D Applications, Netherlands Geodetic Commission, Publications on Geodesy, No. 40, pp 121–128, 1994.Google Scholar
  17. 17.
    C.M. Gold and A.R. Condal, A spatial data structure integrating GIS and simulation in a marine environment, Marine Geodesy, Vol. 18, pp 213–228, 1995.Google Scholar
  18. 18.
    C.M. Gold, P.R. Remmele, and T. Roos, Fully dynamic and kinematic Voronoi diagrams in GIS, Special Issue on Cartography and Geographic Information Systems, Algorithmica, to appear.Google Scholar
  19. 19.
    C.M. Gold, P.R. Remmele, and T. Roos, Voronoi diagrams of line segments made easy, Proc. 7th Canadian Conference on Computational Geometry CCCG'95, Laval University, Quebec City, pp 223–228, 1995.Google Scholar
  20. 20.
    C.M. Gold and T. Roos, Surface Modelling with Guaranteed Consistency — An Object-Based Approach, Proc. Int. Workshop on Advanced Research in GIS IGIS'94, LNCS 884, pp 70–87, 1994.Google Scholar
  21. 21.
    P.J. Green and R. Sibson, Computing Dirichlet tessellations in the plane, The Computer Journal, Vol. 21, pp 168–173, 1978.Google Scholar
  22. 22.
    L.J. Guibas, D.E. Knuth, and M. Sharir, Randomized incremental construction of Delaunay and Voronoi diagrams, Proc. 17th Intl. Colloquium on Automata, Languages and Programming ICALP'90, LNCS 443, Springer, pp 414–431, 1990.Google Scholar
  23. 23.
    L.J. Guibas, J.S.B. Mitchell, and T. Roos, Voronoi diagrams of moving points in the plane, Proc. 17th Intl. Workshop on Graph Theoretic Concepts in Computer Science WG'91, Fischbachau, Germany, LNCS 570, pp 113–125, 1991.Google Scholar
  24. 24.
    L.J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams, ACM Transactions on Graphics, Vol. 4, pp 74–123, 1985.Google Scholar
  25. 25.
    D.T. Lee and R.L. Drysdale, Generalization of Voronoi diagrams in the plane, SIAM J. Comput., Vol. 10, No. 1, pp 73–87, 1981Google Scholar
  26. 26.
    A. Okabe, B. Boots, and K. Sugihara, Spatial tessellations — concepts and applications of Voronoi diagrams, John Wiley and Sons, Chichester, 1992.Google Scholar
  27. 27.
    F.P. Preparata and M.I. Shamos, Computational Geometry: An introduction, Springer, New York, 1985.Google Scholar
  28. 28.
    T. Roos, Dynamic Voronoi diagrams, PhD thesis, University of Würzburg, Germany, 1991.Google Scholar
  29. 29.
    M.I. Shamos and D. Hoey, Closest point problems, Proc. 16th Annual IEEE Symp. on Foundations of Computer Science FOCS'75, pp 151–162, 1975.Google Scholar
  30. 30.
    M. Teillaud, Towards dynamic randomized algorithms in computational geometry, LNCS 758, Springer-Verlag, Berlin, 1993.Google Scholar
  31. 31.
    T. Tokuyama, Deformation of merged Voronoi diagrams with translations, TRL Research Report TR87-0049, IBM Tokyo Research Laboratory, 1988.Google Scholar
  32. 32.
    G.F. Voronoï, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier Mémoire: Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Mathematik, Vol. 133, pp 97–178, 1907. Deuxième Mémoire: Recherches sur les parallélloèdres primitifs, J. Reine Angew. Mathematik, Vol. 134, pp 198–287, 1908 and Vol. 136, pp 67–181, 1909.Google Scholar
  33. 33.
    W. Yang and C.M. Gold, Managing spatial objects with the VMO-Tree, Proc. 7th Intl. Symp. on Spatial Data Handling SDH'96, Vol. 2, Delft, The Netherlands, pp 11B-15 to 11B-30, August 1996.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Christopher M. Gold
    • 1
  • Peter R. Remmele
    • 2
  • Thomas Roos
    • 3
  1. 1.Centre de Recherche en GéomatiqueUniversité LavalCanada
  2. 2.Dept. of Computer ScienceETH ZürichSwitzerland
  3. 3.Dept. of Computer ScienceETH ZürichSwitzerland

Personalised recommendations