Advertisement

Conceptual queries using ConQuer-II

  • A. C. Bloesch
  • T. A. Halpin
Session 4a: Languanges
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1331)

Abstract

Formulating non-trivial queries in relational languages such as SQL and QBE can prove daunting to end users. ConQuer is a conceptual query language that allows users to formulate queries naturally in terms of elementary relationships, operators such as “and”, “or”, “not” and “maybe”, contextual for clauses and object-correlation, thus avoiding the need to deal explicitly with implementation details such as relational tables, null values, outer joins, group by clauses and correlated subqueries. While most conceptual query languages are based on the Entity-Relationship approach, ConQuer is based on Object-Role Modeling (ORM), which exposes semantic domains as conceptual object types, allowing queries to be formulated via paths through the information space. As a result of experience with the first implementation of ConQuer, the language has been substantially revised and extended to become ConQuer-II, and a new tool, ActiveQuery, has been developed with an improved interface. ConQuer-II's new features such as arbitrary correlation and subtyping enable it to be used for a wide range of advanced conceptual queries.

Keywords

Query Language Conceptual Schema Object Type Query Path Frequency Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auddino, A., Amiel, E. & Bhargava, B. 1991 ‘Experiences with SUPER, a Database Visual Environment', DEXA'91 Database and Expert System Applications, pp. 172–178.Google Scholar
  2. 2.
    Bloesch. A.C. & Halpin, T.A. 1996, ‘ConQuer: a conceptual query language', Conceptual Modeling-ER'96, Springer LNCS, no. 1157, pp. 121–33.Google Scholar
  3. 3.
    Campbell, L.J, Halpin, T.A. & Proper, H.A. 1996, ‘Conceptual schemas with abstractions: making flat conceptual schemas more comprehensible', Data and Knowledge Engineering, vol. 20, Elsevier Science, pp. 39–85.Google Scholar
  4. 4.
    Cattell, R.G.G. (ed.) 1994, The Object Database Standard. ODMG-93, Morgan Kaufmann Publishers, San Francisco.Google Scholar
  5. 5.
    Date, C.J. 1996, ‘Aggregate functions', Database Prog. & Design, vol. 9, no. 4, Miller Freeman, San Mateo CA, pp. 17–19.Google Scholar
  6. 6.
    Date, C.J. & Darwen, H. 1992, Relational Database. writings 1989–1991, Addison-Wesley, Reading MA, esp. Chs 17–20.Google Scholar
  7. 7.
    De Troyer, O. & Meersman, R. 1995, ‘A logic framework for a semantics of object oriented data modeling', OOER'95: Object-Oriented and Entity-Relationship Modeling, Springer LNCS, no. 1021, pp. 238-49.Google Scholar
  8. 8.
    Embley, D.W., Wu, H.A., Pinkston, J.S. & Czejdo, B. 1996, ‘OSM-QL: a calculus-based graphical query language', Tech. Report, Dept of Comp. Science, Brigham Young Univ., Utah.Google Scholar
  9. 9.
    Halpin, T.A. 1995, Conceptual Schema and Relational Database Design, 2 nd edn, Prentice-Hall Australia, Sydney.Google Scholar
  10. 10.
    Halpin, T.A. & Orlowska, M.E. 1992, ‘Fact-oriented modelling for data analysis', Journal of Inform. Systems, vol. 2, no. 2, pp, 1–23, Blackwell Scientific, OxfordGoogle Scholar
  11. 11.
    Halpin, T.A. & Proper, H.A. 1995, ‘Subtyping and polymorphism in Object-Role Modeling', Data and Knowledge Engineering, vol. 15, Elsevier Science, pp. 251–81.Google Scholar
  12. 12.
    Halpin, T.A. & Proper, H. A. 1995, ‘Database schema transformation and optimization', OOER'95: Object-Oriented and Entity-Relationship Modeling, Springer LNCS, no. 1021, pp. 191–203.Google Scholar
  13. 13.
    Halpin, T.A. 1996, ‘Business Rules and Object-Role Modeling', Database Prog. & Design, vol. 9, no. 10, Miller Freeman, San Mateo CA, pp. 66–72.Google Scholar
  14. 14.
    Hofstede, A.H.M. ter, Proper, H.A. & Weide, th.P. van der 1993, ‘Formal definition of a conceptual language for the description and manipulation of information models', Information Systems, vol. 18, no. 7, pp. 489–523.Google Scholar
  15. 15.
    Hofstede, A.H.M. ter, Proper, H.A. & Weide, th.P. van der 1996, ‘Query formulation as an information retrieval problem', The Computer Journal, vol. 39, no. 4, pp. 255–74.Google Scholar
  16. 16.
    Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S., 1995, ConceptBase—a Deductive Object Base for Meta Data Management, Journal of Intelligent Information Systems, Special Issue on Advances in Deductive ObjectOriented Databases, vol. 4, no. 2, 167–192.Google Scholar
  17. 17.
    Lawley, M. & Topor R. 1994, ‘A Query Language for EER Schemas', ADC'94 Proceedings of the 5 th Australian Database Conference, Global Publications Service, pp. 292–304.Google Scholar
  18. 18.
    McCormack, J.I., Halpin, T.A. & Ritson, P.R. 1993, ‘Automated mapping of conceptual schemas to relational schemas', Advanced Inf. Sys. Eng: CAiSE'93, Springer LNCS, no. 685, pp. 432–48.Google Scholar
  19. 19.
    Meersman, R. 1982, ‘The RIDL conceptual language', Research report, Int. Centre for Information Analysis Services, Control Data Belgium, Brussels.Google Scholar
  20. 20.
    Mylopoulos, J., Borgida, A., Jarke, M. & Koubarakis, M., 1990, Telos: a language for representing knowledge about information systems, ACM Transactions Information Systems vol. 8, no 4.Google Scholar
  21. 21.
    Ozsoyoglu, G. & Wang, H. 1993, ‘Example-based graphical database query languages', Computer, vol. 26, no. 5, pp. 25–38.Google Scholar
  22. 22.
    Parent, C. & Spaccapietra, S. 1989, ‘About Complex Entities, Complex Objects and Object-Oriented Data Models', Information System Concepts An—In-depth Analysis, Falkenberg, E.D. & Lindgreen, P., Eds., North Holland, pp. 347–360Google Scholar
  23. 23.
    Proper, H.A. & Weide, Th. P. van der 1995, ‘Information disclosure in evolving information systems: taking a shot at a moving target', Data and Knowledge Engineering, vol. 15, no. 2, pp. 135–68, Elsevier Science.Google Scholar
  24. 24.
    Rosengren, P. 1994, ‘Using Visual ER Query Systems in Real World Applications', CAiSE'94: Advanced Information Systems Engineering, Springer LNCS, no. 811, pp. 394–405.Google Scholar
  25. 25.
    Staudt, M., Nissen, H. W., Jeusfeld, M.A. 1994, Query by Class, Rule and Concept. Applied Intelligence, Special Issue on Knowledge Base Management, vol. 4, no. 2, pp. 133–157Google Scholar
  26. 26.
    Wintraecken, J.J.V.R. 1990, The NIAM Information Analysis Method: Theory and Practice, Kluwer, Deventer, The Netherlands.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • A. C. Bloesch
    • 1
  • T. A. Halpin
    • 2
  1. 1.InfoModelers Inc.BellevueUSA
  2. 2.School of Information TechnologyThe University of QueenslandAustralia

Personalised recommendations