Interaction patterns detection in PVM programs to support simulation

  • B. Di Martino
  • A. Mazzeo
  • N. Mazzocca
  • U. Villano
4 Tools
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1332)


In this paper we propose a solution, based on static analysis and statistical techniques, for the problem of the determination of the possible interaction patterns among the processes of a PVM message passing program, when these present a data-dependent behavior. A prototypic implementation of this technique has been coupled with MPSS, a tool for simulation and performance prediction of PVM message passing programs, in order to overcome its unability to deal with non-deterministic and data dependent programs, and thus to provide for a complete program characterization in terms of idle-, cpu-, communication and synchronization time, for irregular and data-dependent programs.


Execution Time Performance Prediction Synchronization Time Prototypic Implementation Symbolic Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Aversa, N. Mazzocca, U. Villano. PS: a Simulator for Heterogeneous Computing Environments. In Massively Parallel Processing Applications and Development, L. Dekker, W. Smit and J. C. Zuidervaart eds., pages 335–343, Elsevier, Amsterdam (NE), 1994.Google Scholar
  2. 2.
    R. Aversa, A. Mazzeo, N. Mazzocca, U. Villano. The Use of Simulation for Software Development in Heterogeneous Computing Environments. In Proc. Int. Conf. on Par. and Distr. Processing Techniques and Applications, pages 581–590, Nov. 1995.Google Scholar
  3. 3.
    R. Aversa, N. Mazzocca, U. Villano. Design of a Simulator of Heterogeneous Computing Environments. to be published in Simulation Practice and Theory.Google Scholar
  4. 4.
    R. Aversa, N. Mazzocca, L. Romano, U. Villano. MPSS: a Simulator of Message-Passing Applications for Heterogeneous Computing Environments. In Proc. Int. Conf. on Massively Parallel Computing Systems, IEEE, 1996.Google Scholar
  5. 5.
    E. A. Brewer, W. E. Weihl. Developing Parallel Applications Using High-Performance Simulation. In Proc. 1993 ONR/ACM Workshop on Parallel and Distr. Debugging, 1993.Google Scholar
  6. 6.
    F. Darema et al., “A single-program-multiple-data computational model for EPEX/FORTRA”, Parallel Computing, 7, pp. 11–24, 1988.CrossRefGoogle Scholar
  7. 7.
    B. Di Martino and G. Iannello, “Parallelization of Nonsimultaneous Iterative Methods for Systems of Linear Equations”, Lecture Notes in Computer Science n. 854, Sett. 1994, Springer-Verlag els.Google Scholar
  8. 8.
    T. Fahringer. Automatic Performance Prediction of Parallel Programs. Kluwer Academic, 1996.Google Scholar
  9. 9.
    A. Geist et al.. PVM: Parallel Virtual Machine — A Users Guide and Tutorial for Networked Parallel Computing. MIT Press, Cambridge, 1994.Google Scholar
  10. 10.
    A. Khokhar, V. K. Prasanna, M. E. Shaaban, C. Wang. Heterogeneous Computing: Challenges and Opportunities. IEEE Computer, 26(6):18–27, June 1993.Google Scholar
  11. 11.
    C. M. Pancake, M. L. Simmons, J. C. Yan. Performance Evaluation Tools for Parallel and Distributed Systems. IEEE Computer, 28(11):16–19, Nov. 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • B. Di Martino
    • 1
    • 2
  • A. Mazzeo
    • 2
  • N. Mazzocca
    • 3
  • U. Villano
    • 4
  1. 1.Institute for Software Technology and Parallel SystemsUniversity of ViennaAustria
  2. 2.Dipartimento di Scienze dell' InformazioneSecond University of NaplesItaly
  3. 3.Dipartimento di Informatica e SistemisticaUniversity “Federico II” of NaplesItaly
  4. 4.IRSIP - CNRNaplesItaly

Personalised recommendations