Advertisement

Parallel turbulence simulation: Resolving the inertial subrange of Kolmogorov's spectra

  • Martin Strietzel
6 Application in Science and Engineering
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1332)

Abstract

We describe our parallel implementation for large-eddy simulation and direct numerical simulation of turbulent fluids (called PARDISTUF) based on the three-dimensional incompressible Navier - Stokes equation. Benchmark results on a set of european supercomputers under the message-passing platform MPI are presented. Using this programm on a 48 node SP-2 we resolved the inertial subrange of Kolmogorv's turbulence spectra for the first time for a stratified and sheared environmental flow.

Keywords

Direct Numerical Simulation Shared Memory Message Passing Inertial Subrange Gradient Richardson Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martin Bücker. Zweidimensionale Schnelle Fourier-Transformation auf massiv parallelen Rechnern. Technical Report Jül-2833, ZAM, Forschungszentrum Jülich, D-52425 Jülich, November 1993.Google Scholar
  2. 2.
    Clare Yung-Lei Chu. The fast Fourier transform on hypercube parallel computers. PhD thesis, Cornell University, 1988.Google Scholar
  3. 3.
    Thomas Gerz, Ulrich Schumann, and S. E. Elghobashi. Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech., 200:563–594, 1989.Google Scholar
  4. 4.
    A. N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. C. R. Acad. Nauk SSSR, 30:301–303, 1941. Reprinted in Proc. Soc. Lond. A, 434, 9-13(1991).Google Scholar
  5. 5.
    Volker Mehrmann. Divide and conquer methods for block tridiagonal systems. Parallel Comput., 19:257–279, 1992.CrossRefGoogle Scholar
  6. 6.
    Message Passing Interface Forum. MPI. A message-passing interface standard, Juni 1995.Google Scholar
  7. 7.
    Ulrich Schumann and Martin Strietzel. Parallel solution of tridiagonal systems for the Poisson equation. J. Sci. Comput., 10(2):181–190, Juni 1995.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Paul N. Swarztrauber. Multiprocessor FFTs. Parallel Comput., 5:197–210, 1987.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Martin Strietzel
    • 1
  1. 1.Deutsche Forschungsanstalt für Luft und Raumfahrt (DLR)Abteilung für High Performance ComputingKöln

Personalised recommendations