Learning the syntax and semantic rules of an ECG grammar

  • Gabriella Kókai
  • János Csirik
  • Tibor Gyimóthy
Machine Learning 2
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1321)

Abstract

In this paper a learning system is presented that is able to learn both the syntax (from an over-generalized grammar) and semantic rules (containing threshold values and relations) of an ECG grammar. These rules are used to direct the classification of QRS complexes and to distinquish between QRS and non-QRS patterns. The system demonstrates how a theory revision method can be used to refine large Prolog programs. 1

Keywords

syntactic pattern recognition ECG inductive logic programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexin, Z., Gyimóthy, T., Boström, H.: Integrating Algorithmic Debugging and Unfolding Transformations in an Interactive Learner In: Proceedings of the 12th European Conference on Artificial Intelligence ECAI-96 ed. Wolfgang Wahlster, Budapest, Hungary (1996) 403–407 John Wiley & Son's Ltd. 1996.Google Scholar
  2. 2.
    Bergadano, F. Gunetti, D.: Inductive Logic Programming Form Machine Learning to Software Engineering The MIT Press (1996)Google Scholar
  3. 3.
    Bostrom, H., Idestam-Almquist, P.: Specialization of Logic Programs by Pruning SLD-trees In: Proc. of the Fourth International Workshop on Inductive Logic Programming (ILP-94) Bad Honnef/Bonn Germany September 12–14. (1994) 31–47Google Scholar
  4. 4.
    Kókai, G., Alexin, Z.,Gyimóthy, T.: Analyzing and learning ECG Waveforms. In Proc. of the Sixth International Workshop on Inductive Logic Programming (ILP'96) 28–30 August, 1996 Stockholm, Sweden, 152–171Google Scholar
  5. 5.
    Kókai, G., Alexin, Z., Gyimóthy, T.: Application of Inductive Logic Programming for Learning ECG Waveform. In Proc. of AIME'97 The 6th Conference on Artificial Intelligence in Medical Europa, 23rd–26th March 1997 Grenoble, France 126–130Google Scholar
  6. 6.
    Moratis, C., Papakonstantinou, G., Skordalakis, E. A Syntactic Model for Pattern Generation Proceedings Int. AMSF. Conf. “Modelling & Simulation” Athens, June 27–29, 1984, Vol. 1.2, p. 1–8Google Scholar
  7. 7.
    Muggleton, S., De Raedt, L.: Inductive Logic Programming: Theory and methods Journal of Logic Programming 19 (20) (1994) 629–679Google Scholar
  8. 8.
    Ostrand, T. J., Balker, M. J.: The Category-Partition Method for Specifying and Generating In: Functional Tests CALM 31:6 June (1988) 676–686Google Scholar
  9. 9.
    Paakki, J., Gyimóthy, T., Horváth T.,: Effective Algorithmic Debugging for Inductive Logic Programming. In Proc. of the Fourth International Workshop on Inductive Logic Programming (ILP-94) Bad Honnef/Bonn Germany September 12–14.(1994) 175–194Google Scholar
  10. 10.
    Pereira, F. C. N., Warren, D. H. D.: Definite clause grammars for language analysis–a survey of the formalism and a comparison with augmented transition networks. In Artificial Intelligence 13: 231–278, (1980)Google Scholar
  11. 11.
    Shapiro, E. Y.: Algorithmic Program Debugging MIT Press (1983)Google Scholar
  12. 12.
    Skordalakis, E.: ECG Analysis in Syntactic and Structural Pattern Recognition Theory and Applications ed. Bunke, H. and Sanfeliu, A. World Scientific (1990) 499–533Google Scholar
  13. 13.
    Tamaki, H., Sato, T.: Unfold/Fold Transformations of Logic Programs. In Proceedings of the Second International Logic Programming Conference, Uppsala University, Uppsala, Sweden (1984) 127–138Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Gabriella Kókai
    • 1
  • János Csirik
    • 2
  • Tibor Gyimóthy
    • 3
  1. 1.Institute of InformaticsJózsef Attila UniversitySzegedHungary
  2. 2.Department of Computer ScienceJózsef Attila UniversitySzegedHungary
  3. 3.Research Group on Artificial IntelligenceHungarian Academy of SciencesSzegedHungary

Personalised recommendations